Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge


THE timing of the last deglaciation is important to our understanding of the dynamics of large ice sheets1 and their effects on the Earth's surface2,3. Moreover, the disappearance of the glacial ice sheets was responsible for dramatic increases in freshwater fluxes to the oceans, which probably disturbed the ocean's thermohaline circulation and, hence, global climate4–7. Sea-level increases bear witness to the melting of continental ice sheets, but only two such records—from Barbados8,9 and New Guinea10,11 corals—have been accurately dated. But these corals overlie active subduction zones, where tectonic movements are large and often discontinuous (especially in New Guinea), so the apparent sea-level records may be contaminated by a complex tectonic component. Here we date fossil corals from Tahiti, which is far from plate boundaries (and thus is likely to be tectonically relatively stable) and remote from the locations of large former ice sheets. The resulting record indicates a large sea-level jump shortly before 13,800 calendar years BP, which corresponds to meltwater pulse 1A in the Barbados coral records8,9. The timing of this event is more accurately constrained in the Tahiti record, revealing that the meltwater pulse coincides with a short and intense climate cooling event12–15 that followed the initiation of the Bølling–Allerød warm period12–16, but preceded the Younger Dryas cold event by about 1,000 years.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Lindstrom, D. R. & MacAyeal, D. R. Nature 365, 214–215 (1993).

    ADS  Article  Google Scholar 

  2. 2

    Lambeck, K. Tectonophysics 233, 15–37 (1993).

    ADS  Article  Google Scholar 

  3. 3

    Peltier, W. R. Science 265, 195–201 (1994).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Stocker, T. F. & Wright, D. G. Nature 351, 729–732 (1991).

    ADS  Article  Google Scholar 

  5. 5

    Manabe, S. & Stouffer, R. J. Nature 378, 165–167 (1995).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Rahmstorf, S. Nature 378, 145–149 (1995).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Schiller, A., Mikolajewicz, U. & Voss, R. Max-Planck für Meteorology Rep. 188, 1–42 (1996).

    Google Scholar 

  8. 8

    Fairbanks, R. G. Nature 342, 637–647 (1989).

    ADS  Article  Google Scholar 

  9. 9

    Bard, E., Hamelin, B. & Fairbanks, R. G. Nature 346, 456–458 (1990).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Chappell, J. & Polach, H. Nature 349, 147–149 (1991).

    ADS  Article  Google Scholar 

  11. 11

    Edwards, R. L. et al. Science 260, 962–968 (1993).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Johnsen, S. J. et al. Nature 359, 311–313 (1992).

    ADS  Article  Google Scholar 

  13. 13

    Alley, R. B. et al. Nature 362, 527–529 (1993).

    ADS  Article  Google Scholar 

  14. 14

    Taylor, K. C. et al. Nature 361, 432–436 (1993).

    ADS  Article  Google Scholar 

  15. 15

    Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S. & Jouzel, J. Nature 366, 552–554 (1993).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Broecker, W. S. Quat. Res. 38, 135–138 (1992).

    Article  Google Scholar 

  17. 17

    Bard, E., Hamelin, B., Fairbanks, R. G., Zindler, A. Nature 345, 405–410 (1990).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Fairbanks, R. G. Paleoceanography 5, 937–948 (1990).

    ADS  Article  Google Scholar 

  19. 19

    Blanchon, P. & Shaw, J. Geology 23, 4–8 (1995).

    ADS  Article  Google Scholar 

  20. 20

    Broecker, W. S. Paleoceanography 5, 459–467 (1990).

    ADS  Article  Google Scholar 

  21. 21

    Bard, E. et al. Nucl. Instrum. Meth. B52, 461–468 (1990).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Bard, E. et al. Geophys. Res. Let. 23(12), 1473–1476 (1996).

    ADS  Article  Google Scholar 

  23. 23

    Chen, J. H., Edwards, R. L. & Wasserburg, G. J. Earth planet. Sci. Let. 80, 241–251 (1986).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Bard, E., Arnold, M., Fairbanks, R. G. & Hamelin, B. Radiocarbon 35, 191–199 (1993).

    CAS  Article  Google Scholar 

  25. 25

    Goslar, T. M. et al. Nature 377, 414–417 (1995).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Cabioch, G., Join, Y., Ihilly, C. & Laurent, J.-L. Rapports de Missions ORSTOM 32 (ORSTOM, Nouméa, 1995).

    Google Scholar 

  27. 27

    Bard, E. et al. Nature 328, 791–794 (1987).

    ADS  Article  Google Scholar 

  28. 28

    Clark, P. U. Geology 23, 957–959 (1995).

    ADS  Article  Google Scholar 

  29. 29

    Mangerud, J., Andersen, S. T., Berglund, B. E. & Donner, J. J. Boreas 3, 109–128 (1974).

    Article  Google Scholar 

  30. 30

    Ludwig, K. R. et al. Science 258, 284–287 (1992).

    ADS  CAS  Article  Google Scholar 

  31. 31

    Pirazzoli, P. A. & Montaggioni, L. F. Palaeogeogr. Palaeoclimatol. Palaeoecol. 68, 153–175 (1988).

    Article  Google Scholar 

  32. 32

    Le Roy, I. thesis, Univ. Paris XI (1994).

  33. 33

    Bosscher, H. & Schlager, W. Sedimentology 39, 503–512 (1992).

    ADS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bard, E., Hamelin, B., Arnold, M. et al. Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge. Nature 382, 241–244 (1996).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing