Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural basis of RNA folding and recognition in an AMP–RNA aptamer complex

Abstract

THE catalytic properties of RNA1,2 and its well known role in gene expression and regulation are the consequence of its unique solution structures. Identification of the structural determinants of ligand recognition by RNA molecules is of fundamental importance for understanding the biological functions of RNA, as well as for the rational design of RNA sequences with specific catalytic activities3–6. Towards this latter end, Szostak et al.7,8 used in vitro selection techniques to isolate RNA sequences ('aptamers') containing a high-affinity binding site for ATP, the universal currency of cellular energy, and then used this motif to engineer ribozymes with polynucleotide kinase activity. Here we present the solution structure, as determined by multidimensional NMR spectroscopy and molecular dynamics calculations, of both uniformly and specifically 13C-, 15N-labelled 40-mer RNA containing the ATP-binding motif complexed with AMP. The aptamer adopts an L-shaped structure with two nearly orthogonal stems, each capped proximally by a G·G mismatch pair, binding the AMP ligand at their junction in a GNRA-like motif.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cech, T. R., Zaug, A. J. & Grabowski, P. J. Cell 27, 487–496 (1981).

    Article  CAS  Google Scholar 

  2. Kole, R. & Altman, S. Biochemistry 20, 1902–1906 (1981).

    Article  CAS  Google Scholar 

  3. Joyce, G. F. Gene 82, 83–87 (1989).

    Article  CAS  Google Scholar 

  4. Robertson, D. L. & Joyce, G. F. Nature 344, 467–468 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Ellington, A. & Szostak, J. W. Nature 346, 812–822 (1990).

    Article  ADS  Google Scholar 

  6. Tuerk, C. & Gold, L. Science 249, 505–510 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Sassanfar, M. & Szostak, J. W. Nature 364, 550–553 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Lorsch, J. R. & Szostak, J. W. Nature 371, 31–36 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Woese, C. R., Winker, S. & Gutell, R. R. Proc. natn. Acad. Sci. U.S.A. 87, 8467–8471 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Heus, H. A. & Pardi, A. Science 253, 191–194 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Varani, G., Cheong, C. & Tinoco, I. Jr Biochemistry 30, 3280–3289 (1991).

    Article  CAS  Google Scholar 

  12. Orita, M. et al. Nucleic Acids Res. 21, 5670–5678 (1993).

    Article  CAS  Google Scholar 

  13. Pley, H. W., Flaherty, K. M. & McKay, D. B. Nature 372, 68–74 (1994).

    Article  ADS  CAS  Google Scholar 

  14. Scott, W. G., Finch, J. T. & Klug, A. Cell 81, 991–1002 (1995).

    Article  CAS  Google Scholar 

  15. Puglisi, J. D. et al. Science 257, 76–80 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Aboul-ela, F., Karn, J. & Varani, G. J. molec. Biol. 253, 313–332 (1995).

    Article  CAS  Google Scholar 

  17. Battiste, J. L., Tan, R., Frankel, A. D. & Williamson, J. R. J. Biomol. NMR 6, 375–389 (1995).

    Article  CAS  Google Scholar 

  18. Puglisi, J. D., Chen, L., Blanchard, S. & Frankel, A. D. Science 270, 1200–1203 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Ye, X., Kumar, R. A. & Patel, D. J. Chem. Biol. 2, 827–840 (1995).

    Article  CAS  Google Scholar 

  20. Fan, P. et al. J. molec. Biol. 258, 480–500 (1996).

    Article  CAS  Google Scholar 

  21. Allain, F. H. T. et al. Nature 380, 646–650 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Koshland, D. E. Jr Harvey Lect. 65, 33–57 (1971).

    PubMed  Google Scholar 

  23. Brünger, A. T. X-PLOR, A System for X-ray Crystallography and NMR (Yale University Press, New Haven, Connecticut, 1992).

    Google Scholar 

  24. Nikonowicz, E. P. et al. Nucleic Acids Res. 20, 4508–4513 (1992).

    Article  Google Scholar 

  25. Pardi, A. Meth. Enzym. 261, 350–380 (Academic, New York, 1995).

    Article  CAS  Google Scholar 

  26. Delaglio, F. et al. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  27. Lavery, R. & Sklenar, H. J. biomolec. Struct. Dyn. 6, 63–91 (1988).

    Article  CAS  Google Scholar 

  28. Nicholls, A., Sharp, K. A. & Honig, B. Proteins Struct. Func. Genet. 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, F., Kumar, R., Jones, R. et al. Structural basis of RNA folding and recognition in an AMP–RNA aptamer complex. Nature 382, 183–186 (1996). https://doi.org/10.1038/382183a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/382183a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing