Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural control on sea-floor hydrothermal activity at the TAG active mound

Abstract

THE TAG active mound1–13, on the Mid-Atlantic Ridge near 26° N, is one of the largest known, actively forming volcanogenic massive sulphide deposits. Construction of such a deposit requires that the upflow of hydrothermal fluids be localized at this site over tens of thousands of years, but the cause of this localization has been controversial. Two popular hypotheses propose that it results from young volcanism immediately adjacent to the mound6, or from the intersection of a 'transfer fault', orthogonally crossing the rift-valley floor, with ridge-parallel faults8. Here we present high-resolution sonar and photographic data which provide no evidence for young eruptions nearby, or for transverse, through-going faults intersecting the TAG mound. Instead, our data suggest that the localization of hydrothermal activity at the TAG mound is strongly controlled by permeable conduits at the intersection of an actively developing ridge-parallel fissure/fault complex with a newly recognized but older, oblique fault system. These observations may aid the interpretation of similar structures in ancient sea-floor sulphide deposits, where the tectonic disruption caused by emplacement on land has obscured the original geometry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rona, P. A., Klinkhammer, G., Nelsen, T. A., Trefry, J. H. & Elderfield, H. Nature 321, 33–37 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Eberhart, G. L., Rona, P. A. & Honnorez, J. Mar. geophys. Res. 10, 233–259 (1988).

    Article  Google Scholar 

  3. Campbell, A. C. et al. Nature 335, 514–519 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Thompson, G., Humphris, S. E., Schroeder, B., Sulanowska, M. & Rona, P. A. Can. Mineralogist 26, 697–711 (1988).

    CAS  Google Scholar 

  5. Lisitsyn, A. P., Bogdanov, Y. A., Zonenshayn, L. P., Kuz'min, M. I. & Sagalevich, A. M. Int. Geol. Rev. 31, 1183–1198 (1989).

    Article  Google Scholar 

  6. Zonenshain, L. P., Kuzmin, M. I., Lisitsin, A. P., Bogdanov, Y. A. & Baranov, B. V. Tectonophysics 159, 1–23 (1989).

    Article  ADS  Google Scholar 

  7. Lalou, C et al. Earth planet. Sci. Lett. 97, 113–128 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Karson, J. A. & Rona, P. A. Geol. Soc. Am. Bull. 102, 1635–1645 (1990).

    Article  ADS  Google Scholar 

  9. Tivey, M. A., Rona, P. A. & Schouten, H. Earth planet. Sci. Lett. 115, 101–115 (1993).

    Article  ADS  Google Scholar 

  10. Rona, P. A. et al. Econ. Geol. 18, 1989–2017 (1993).

    Article  Google Scholar 

  11. Tivey, M. K., Humphris, S. E., Thompson, G., Hannington, M. D. & Rona, P. A. J. geophys. Res. 100, 12527–12555 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Lalou, C. et al. J. geophys. Res. 98, 9705–9713 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Humphris, S. E. et al. Nature 377, 713–716 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Ballard, R. D., Yoerger, D. R., Stewart, W. K. & Bowen, A. in Proc. IEEE Oceans Conf. 71–75 (IEEE, 1991).

  15. Kleinrock, M. C. in CRC Handbook of Geophysical Exploration at Sea (ed. Geyer, R.) 35–86 (CRC, Boca Raton, 1992).

    Google Scholar 

  16. Stewart, W. K., Chu, D., Malik, S., Lerner, S. & Singh, H. IEEE J. Oceanic Engng. 19, 599–610 (1994).

    Article  ADS  Google Scholar 

  17. Shaw, P. A., Kleinrock, M. C. & Humphris, S. E. (abstr.) Eos 75, 649 (1994).

    Google Scholar 

  18. Smith, D. K. & Cann, J. R. J. geophys. Res. 365, 707–715 (1993).

    Google Scholar 

  19. Rudnicki, M. D. & Elderfield, H. J. Volcan. geotherm. Res. 50, 161–172 (1992).

    Article  ADS  Google Scholar 

  20. Scott, M. R., Scott, R. B., Rona, P. A., Butler, L. W. & Nalwalk, A. J. Geophys. Res. Lett. 1, 355–358 (1974).

    Article  ADS  CAS  Google Scholar 

  21. Temple, D. G., Scott, R. B. & Rona, P. A. J. geophys. Res. 84, 7453–7466 (1979).

    Article  ADS  Google Scholar 

  22. Thompson, G., Mottl, M. J. & Rona, P. A. Chem. Geol. 49, 243–257 (1985).

    Article  ADS  CAS  Google Scholar 

  23. Macdonald, K. C. et al. Nature 335, 217–225 (1988).

    Article  ADS  Google Scholar 

  24. Purdy, G. M., Sempere, J.-C., Schouten, H., Dubois, D. L. & Goldsmith, R. Mar. geophys. Res. 12, 247–252 (1990).

    Article  Google Scholar 

  25. Rona, P. A. et al. J. geophys. Res. 89, 11365–1377 (1984).

    Article  ADS  Google Scholar 

  26. Kleinrock, M. C. & Humphris, S. E. Geophys. Res. Lett. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleinrock, M., Humphris, S. Structural control on sea-floor hydrothermal activity at the TAG active mound. Nature 382, 149–153 (1996). https://doi.org/10.1038/382149a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/382149a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing