Heated gaseous streamers and star formation in the Orion molecular cloud

Abstract

THE Orion molecular cloud, which is obscured by the dust and ionized gas of the Orion nebula, is the nearest example of a giant molecular cloud. Massive stars are actively forming deep in the core of this cloud as a result of large-scale cloud instabilities, fragmentation and gravitational collapse. These young stars will inject a considerable amount of energy back into the surrounding environment through stellar winds and radiation1, and they are thus expected to exert a major influence on the evolution of the cloud. Here we present a mosaic of ten high-resolution radio maps of the region of the cloud known as OMC-1; the maps were constructed from observations of two ammonia emission lines, which trace the densest regions of the gas while mitigating the obscuring effects of the dust. We find dense filaments of molecular gas with complex motions fanning out more than 0.5 parsec from the central core of the cloud. These filaments appear as long, bead-like chains, consisting of dense clumps of gas that may be the sites of future star formation. The outer sheaths of clumps and the edges of filaments may be heated as a direct result of radiation and outflows from young stars embedded in the central core.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Shu, F. H., Adams, F. C. & Lizano, S. A. Rev. Astr. Astrophys. 25, 23–81 (1987).

  2. 2

    Bally, J., Langer, W., Stark, A. & Wilson, R. Astrophys. J. 312, L45–L49 (1987).

  3. 3

    Dutrey, A. et al. Astr. Astrophys. 247, L9–L12 (1991).

  4. 4

    Maddalena, R., Morris, M., Moscowitz, J. & Thaddeus, P. Astrophys. J. 303, 375–391 (1986).

  5. 5

    Batrla, W., Wilson, T. L., Bastien, P. & Ruf, K. Astr. Astrophys. 128, 279–290 (1983).

  6. 6

    Tatematsu, K. et al. Astrophys. J. 404, 643–662 (1993).

  7. 7

    Rodríguez-Franco, A., Martin-Pintado, J., Gómez-González, J. & Planesas, P. Astr. Astrophys. 264, 592–609 (1992).

  8. 8

    Ho, P. T. P. & Townes, C. H. A. Rev. Astr. Astrophys. 21, 239–270 (1983).

  9. 9

    Dougados, C., Léna, P., Ridgway, S. T., Christou, J. C. & Probst, R. G. Astrophys. J. 406, 112–121 (1993).

  10. 10

    Zhou, S., Wu, Y., Evans, N., Fuller, G. & Myers, P. Astrophys. J. 346, 168–179 (1989).

  11. 11

    Davis, C. J. & Dent, W. R. F. Mon. Not. R. astr. Soc. 261, 371–378 (1993).

  12. 12

    Ungerechts, H. et al. Lect. Not. Phys. no. 459 (eds Winnewisser, G. and Pelz, G. C.) 258–264 (Springer, Heidelberg, 1995).

  13. 13

    Murata, Y. et al. Astrophys. J. 359, 125–130 (1990).

  14. 14

    Martin-Pintado, J., Rodriguez-Franco, A. & Bachiller, R. Astrophys. J. 357, L49–L52 (1990).

  15. 15

    Wiseman, J. & Ho, P. T. P. in Clouds, Cores, and Low Mass Stars (eds Clemens, D. P. and Barvainis, R.) 396–400 (Conf. Ser. 65, Astr. Soc. Pacif., San Francisco, 1994).

  16. 16

    Stodólkiewicz, J. S. Acta astr. 13(1), 30–64 (1963).

  17. 17

    Larson, R. B. Mon. Not. R. astr. Soc. 214, 379–398 (1985).

  18. 18

    Hanawa, T. et al. Astrophys. J. 404, L83–L86 (1993).

  19. 19

    Womack, M., Ziurys, L. M. & Sage, L. J. Astrophys. J. 406, L29–L33 (1993).

  20. 20

    Hartquist, T. W. & Dyson, J. E. Q. JI. R. astr. Soc. 34, 57–71 (1993).

  21. 21

    Ho, P. T. P., Martin, R. N. & Barrett, A. H. Astrophys. J. 246, 761–787 (1981).

  22. 22

    Allen, D. A. & Burton, M. G. Nature 363, 54–56 (1993).

  23. 23

    Axon, D. J. & Taylor, K. Mon. Not. R. astr. Soc. 207, 241–261 (1984).

  24. 24

    Taylor, K. N. R., Storey, J. W. V., Sandell, G., Williams, P. M. & Zealey, W. J. Nature 311, 236–237 (1984).

  25. 25

    Stone, J. M., Xu, J. & Mundy, L. G. Nature 377, 315–317 (1995).

  26. 26

    Gehman, C. S., Adams, F. C., Fatuzzo, M. & Watkins, R. Astrophys. J. 457, 718–730 (1996).

  27. 27

    Ishiguro, M. & Welch, W. J. (eds) Astronomy with Millimeter and Submillimeter Wave interferometry Sect. 4, 384–431 (Conf. Ser. 59, Astr. Soc. Pacif., San Francisco, 1994).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wiseman, J., Ho, P. Heated gaseous streamers and star formation in the Orion molecular cloud. Nature 382, 139–141 (1996). https://doi.org/10.1038/382139a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.