Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies

Abstract

The evolution of non-photosynthetic sulphide-oxidizing bacteria was contemporaneous with a large shift in the isotopic composition of biogenic sedimentary sulphides between 0.64 and 1.05 billion years ago. Both events were probably driven by a rise in atmospheric oxygen concentrations to greater than 5–18% of present levels—a change that may also have triggered the evolution of animals.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Runnegar, B. Palaeontology 29, 1–24 (1986).

    Google Scholar 

  2. 2

    Glaessner, M. F. Geol. Soc. Am. Bull. 82, 509–514 (1971).

    ADS  Article  Google Scholar 

  3. 3

    Bowring, S. A. et al. Science 261, 1293–1298 (1993).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Berkner, L. V. & Marshall, L. C. J. atmos. Res. 22, 225–261 (1965).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Runnegar, B. Palaeogeogr. Palaeoclimatol. Palaeoecol. 97, 97–111 (1991).

    Article  Google Scholar 

  6. 6

    Knoll, A. H. in Origin and Early Evolution fo the Metazoa (eds Lipps, J. H. & Signer, D. W.) 53–84 (Plenum, New York, 1992).

    Book  Google Scholar 

  7. 7

    Towe, K. M. Proc. natn. Acad. Sci. U.S.A. 65, 781–788 (1970).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Des Marais, D. J., Strauss, H., Summons, R. E. & Hayes, J. M. Nature 359, 605–609 (1992).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Holland, H. D. The Chemistry of the Atmosphere and Oceans (Wiley, New York, 1978).

    Google Scholar 

  10. 10

    Knoll, A. H., Hayes, J. M., Kaufman, A. J., Swett, K. & Lambert, I. B. Nature 321, 832–838 (1986).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Woese, C. R. Microbiol. Rev. 51, 221–271 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Fox, G. E. et al. Science 209, 457–463 (1980).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Bland, J. A. & Staley, J. T. Arch. Microbiol. 117, 79–87 (1978).

    Article  Google Scholar 

  14. 14

    Jørgensen, B. B. Phil. Trans. R. Soc. Lond. B 298, 543–561 (1982).

    Article  Google Scholar 

  15. 15

    Fossing, H. et al. Nature 374, 713–715 (1995).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Kuenen, J. G., Robertson, L. A. & Tuovinen, O. H. in The Prokaryotes (eds Balows, A., Trüper, H. G., Dworkin, M., Harder, W. & Schleifer, K.-H.) 2638–2657 (Springer, New York, 1991).

    Google Scholar 

  17. 17

    Ochman, H. & Wilson, A. C. J. molec. Evol. 26, 74–86 (1987).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Distel, D. L., Felbeck, H. & Cavanaugh, C. M. J. molec. Evol. 38, 533–542 (1994).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Muyzer, G., Teske, A., Wirsen, C. O. & Jannasch, H. W. Arch. Microbiol. 164, 165–172 (1995).

    CAS  Article  Google Scholar 

  20. 20

    Polz, M. F., Odintsova, E. & Cavanaugh, C. M. Int. J. syst. Bact. 46, 94–97 (1996).

    CAS  Article  Google Scholar 

  21. 21

    Teske, A., Ramsing, N. B., Küver, J. & Fossing, H. Syst. appl. Microbiol. 18, 517–526 (1995).

    Article  Google Scholar 

  22. 22

    Lane, D. J. et al. J. Bact. 174, 269–278 (1992).

    CAS  Article  Google Scholar 

  23. 23

    Reid, R. G. B. & Brand, D. G. Veliger 29, 3–24 (1986).

    Google Scholar 

  24. 24

    Campbell, K. A. & Bottjer, D. J. Natn. geogr. Res. Explor. 9, 326–343 (1993).

    Google Scholar 

  25. 25

    Cavanaugh, C. M. Am. Zool. 34, 79–89 (1994).

    Article  Google Scholar 

  26. 26

    Pojeta, J. J. New Mex. Bur. Mines miner. Resour. Mem. 44, 201–271 (1988).

    Google Scholar 

  27. 27

    Moran, N. A., Munson, M. A., Baumann, P. & Ishikawa, H. Proc. R. Soc. Lond. B 253, 167–171 (1993).

    ADS  Article  Google Scholar 

  28. 28

    Holland, H. D., Feakes, C. R. & Zbinden, E. A. Am, J. Sci. 289, 362–389 (1989).

    ADS  CAS  Article  Google Scholar 

  29. 29

    Holland, H. D. & Beukes, N. J. Am. J. Sci. 290, 1–34 (1990).

    Article  Google Scholar 

  30. 30

    Kemp, A. L. W. & Thode, H. G. Geochim. cosmochim. Acta 32, 71–91 (1968).

    ADS  CAS  Article  Google Scholar 

  31. 31

    Jørgensen, B. B. Science 249, 152–154 (1990).

    ADS  Article  Google Scholar 

  32. 32

    Canfield, D. E. & Thamdrup, B. Science 266, 1973–1975 (1994).

    ADS  CAS  Article  Google Scholar 

  33. 33

    Fry, B. et al. Deep-Sea Res. 38, S655–S661 (1991).

    Article  Google Scholar 

  34. 34

    Jørgensen, B. B., Fossing, H., Wirsen, C. O. & Jannasch, H. W. Deep-Sea Res. 38, S1083–S1103 (1991).

    ADS  Article  Google Scholar 

  35. 35

    Goldhaber, M. B. & Kaplan, I. R. Soil Sci. 119, 42–55 (1975).

    ADS  CAS  Article  Google Scholar 

  36. 36

    Ohmoto, H., Kakegawa, T. & Lowe, D. R. Science 262, 555–557 (1993).

    ADS  CAS  Article  Google Scholar 

  37. 37

    Pyzik, A. J. & Sommer, S. S. Geochim. cosmochim. Acta 45, 687–698 (1981).

    ADS  CAS  Article  Google Scholar 

  38. 38

    Canfield, D. E. et al. Mar. Geol. 113, 27–40 (1993).

    ADS  CAS  Article  Google Scholar 

  39. 39

    Ross, G. M., Bloch, J. D. & Krouse, H. R. Precambr. Res. 73, 71–99 (1995).

    ADS  CAS  Article  Google Scholar 

  40. 40

    Fedonkin, M. A. & Runnegar, B. N. in The Proterozoic Biosphere (eds Schopf, J. W. & Klein, C.) 389–395 (Cambridge Univ. Press, 1992).

    Google Scholar 

  41. 41

    Hayes, J. M., Lambert, I. B. & Strauss, H. in The Proterozoic Biosphere (eds Schopf, J. W. & Klein, C.) 129–132 (Cambridge Univ. Press, 1992).

    Google Scholar 

  42. 42

    Sergeev, V. N., Knoll, A. H. & Grotzinger, J. P. J. Paleont. 69, 1–37 (1995).

    CAS  Article  Google Scholar 

  43. 43

    Logan, G. A., Hayes, J. M., Hieshima, G. B. & Summons, R. E. Nature 376, 53–56 (1995).

    ADS  CAS  Article  Google Scholar 

  44. 44

    Pfennig, N. Pl. Soil 43, 1–16 (1975).

    CAS  Article  Google Scholar 

  45. 45

    Chambers, L. A. & Trudinger, P. A. Geomicrobiol. J. 1, 249–293 (1979).

    CAS  Article  Google Scholar 

  46. 46

    Trüper, H. G. & Fischer, U. Phil. Trans. R. Soc. Lond. B 298, 529–542 (1982).

    Article  Google Scholar 

  47. 47

    Thamdrup, B., Finster, K., Hansen, J. W. & Bak, F. Appl. envir. Microbiol. 59, 101–108 (1993).

    CAS  Google Scholar 

  48. 48

    Pierson, B. K. et al. in The Proterozoic Biosphere (eds Schopf, J. W. & Klein, C.) 247–340 (Cambridge Univ. Press, 1992).

    Google Scholar 

  49. 49

    Overmann, J., Beatty, J. T., Krouse, H. R. & Hall, K. J. Limnol. Oceanogr. 41, 147–156 (1996).

    ADS  CAS  Article  Google Scholar 

  50. 50

    Schidlowski, M. in Organic Geochemistry (eds Engel, M. H. & Macko, S. A.) 639–655 (Plenum, New York, 1993).

    Book  Google Scholar 

  51. 51

    Felsenstein, J. PHYLIP (Phylogeny Inference Package) (Seattle, 1993).

    Google Scholar 

  52. 52

    Maidak, B. L. et al. Nucleic Acids Res. 22 (suppl.), 3485–3487 (1994).

    CAS  Article  Google Scholar 

  53. 53

    Cox, D. L. et al. in Treatise on Invertebrate Paleontology (eds Moore, R. C.) N225–N868 (Geological Society of America, Lawrence, KS, 1969).

    Google Scholar 

  54. 54

    Bretsky, S. S. in Palaeontogr. am. 8, 217–338 (1976).

    Google Scholar 

  55. 55

    Goedert, J. L. & Squires, R. L. Veliger 36, 72–77 (1993).

    Google Scholar 

  56. 56

    Nakai, N. & Jensen, M. L. Geochim. cosmochim. Acta 28, 1893–1912 (1964).

    ADS  CAS  Article  Google Scholar 

  57. 57

    Cameron, E. M. Nature 296, 145–148 (1982).

    ADS  CAS  Article  Google Scholar 

  58. 58

    Burnie, S. W., Schwarcz, H. P. & Crocket, J. H. Econ. Geol. 67, 895–914 (1972).

    CAS  Article  Google Scholar 

  59. 59

    Lindh, T. B. thesis, Univ. Miami (1983).

  60. 60

    Strauss, H. Precambr. Res. 63, 225–246 (1993).

    ADS  CAS  Article  Google Scholar 

  61. 61

    Gundersen, J. K. & Jørgensen, B. B. Nature 345, 604–607 (1990).

    ADS  CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Canfield, D., Teske, A. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature 382, 127–132 (1996). https://doi.org/10.1038/382127a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing