Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A helical arch allowing single-stranded DNA to thread through T5 5'-exonuclease

Abstract

THE 5'-exonucleases are enzymes that are essential for DNA replication and repair1. As well as their exonucleolytic action, removing nucleotides from the 5'-end of nucleic acid molecules such as Okazaki fragments2, many 5'-3'-exonucleases have been shown to possess endonucleolytic activities3,4. T5 5'-3'-exonuclease shares many similarities with the amino termini of eubacterial DNA polymerases5, although, unlike eubacteria, phages such as T5, T4 and T7 express polymerase and 5'-exonuclease proteins from separate genes. Here we report the 2.5-Å crystal structure of the phage T5 5'-exonuclease, which reveals a helical arch for binding DNA. We propose a model consistent with a threading mechanism in which single-stranded DNA could slide through the arch, which is formed by two helices, one containing positively charged, and the other hydrophobic, residues. The active site is at the base of the arch, and contains two metal-binding sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kornberg, A. & Baker, T. DNA Replication 2nd edn (W. H. Freeman, New York, 1992).

    Google Scholar 

  2. Okazaki, R., Arisawa, M. & Sugino, A. Proc. natn. Acad. Sci. U.S.A. 68, 2954–2957 (1971).

    Article  ADS  CAS  Google Scholar 

  3. Lyamichev, V., Brow, M. A. D. & Dahlberg, J. E. Science 260, 778–783 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Harrington, J. J. & Lieber, M. R. EMBO J. 13, 1235–1246 (1994).

    Article  CAS  Google Scholar 

  5. Gutman, P. D. & Minton, K. W. Nucleic Acids Res. 21, 4406–4407 (1993).

    Article  CAS  Google Scholar 

  6. Sayers, J. R. & Eckstein, F. J. biol. Chem. 265, 18311–18317 (1990).

    CAS  PubMed  Google Scholar 

  7. Ceska, T. A., Sayers, J. R., Eckstein, F. & Suck, D. J. molec. Biol. 233, 179–182 (1993).

    Article  CAS  Google Scholar 

  8. Sayers, J. R. & Eckstein, F. Nucleic Acids Res. 19, 4127–4132 (1991).

    Article  CAS  Google Scholar 

  9. Kim, Y. et al. Nature 376, 612–616 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Sayers, J. R. J. theor. Biol. 170, 415–421 (1994).

    Article  CAS  Google Scholar 

  11. Skinner, M. M. et al. Proc. natn. Acad. Sci. U.S.A. 91, 2071–2075 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Beese, L. S. & Steitz, T. A. EMBO J. 10, 25–33 (1991).

    Article  CAS  Google Scholar 

  13. Lima, C. D., Wang, J. C. & Mondragon, A. Nature 367, 138–146 (1994).

    Article  ADS  CAS  Google Scholar 

  14. Berger, J. M., Gamblin, S. J., Harrison, S. C. & Wang, J. C. Nature 379, 225–233 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Wigley, D. B., Davies, G. J., Dodson, E. J., Maxwell, A. & Dodson, G. Nature 351, 624–629 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Robins, P., Pappin, D. J. C., Wood, R. D. & Lindahl, T. J. biol. Chem. 269, 28535–28538 (1994).

    CAS  Google Scholar 

  17. Murante, R. S., Rust, L. & Bambara, R. A. J. biol. Chem. 270, 30377–30383 (1995).

    Article  CAS  Google Scholar 

  18. Sayers, J. R., Krekel, C. & Eckstein, F. BioTechniques 13, 592–596 (1992).

    CAS  PubMed  Google Scholar 

  19. Otwinowski, Z. DENZO (Yale University, New Haven, CT, 1993).

  20. Furey, W. & Swaminathan, S. Am. Crystallographic Ass. Meet. Abstr. 18, 73 (1990).

    Google Scholar 

  21. Vellieux, F. M. D. A., Hunt, J. F., Roy, S. & Read, R. J. J. appl. Crystallogr. 28, 347–351 (1995).

    Article  CAS  Google Scholar 

  22. Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Acta crystallogr. A47, 110–119 (1991).

    Article  Google Scholar 

  23. Collaborative Computational Project Number 4 Acta crystallogr. D50, 760–763 (1993).

  24. Brunger, A. T. X-PLOR, Version 3.1 (Yale University, New Haven, CT, 1993).

  25. Nicholls, A., Sharp, K. A. & Honig, B. Proteins Struct. Funct. Genet. 11, 282–296 (1991).

    Article  Google Scholar 

  26. Carson, M. J. molec. Graphics 5, 103–106 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ceska, T., Sayers, J., Stier, G. et al. A helical arch allowing single-stranded DNA to thread through T5 5'-exonuclease. Nature 382, 90–93 (1996). https://doi.org/10.1038/382090a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/382090a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing