Abnormal processing of visual motion in dyslexia revealed by functional brain imaging

Abstract

IT is widely accepted that dyslexics have deficits in reading and phonological awareness1,2, but there is increasing evidence that they also exhibit visual processing abnormalities that may be confined to particular portions of the visual system3,4. In primate visual pathways, inputs from parvocellular or magnocellular layers of the lateral geniculate nucleus remain partly segregated in projections to extrastriate cortical areas specialized for processing colour and form versus motion5–10. In studies of dyslexia, psychophysical3 and anatomical4 evidence indicate an anomaly in the magnocellular visual subsystem. To investigate the patho-physiology of dyslexia, we used functional magnetic resonance imaging (fMRI) to study visual motion processing in normal and dyslexic men. In all dyslexics, presentation of moving stimuli failed to produce the same task-related functional activation in area V5/MT (part of the magnocellular visual subsystem) observed in controls. In contrast, presentation of stationary patterns resulted in equivalent activations in V1/V2 and extrastriate cortex in both groups. Although previous studies have emphasized language deficits, our data reveal differences in the regional functional organization of the cortical visual system in dyslexia.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Bradley, L. & Bryant, P. Nature 271, 746–747 (1978).

  2. 2

    Snowling, M. Psychol. Res. 43, 219–234 (1981).

  3. 3

    Lovegrove, W. J., Bowling, A., Badock, D. & Blackwood, M. Science 210, 439–440 (1980).

  4. 4

    Livingstone, M., Rosen, G. D., Drislane, F. W. & Galaburda, A. Proc. natn. Acad. Sci. U.S.A. 88, 7943–7947 (1991).

  5. 5

    Zeki, S. M. Brain Res. 53, 422–427 (1973).

  6. 6

    Ungerleider, L. G. & Mishkin, M. in Analysis of Visual behavior (eds Ingle, D. J., Goodale, M. A. & Mansfield, R. J. W.) 549–586 (MIT Press, Cambridge, MA, 1982).

  7. 7

    Livingstone, M. & Hubel, D. Science 240, 740–749 (1988).

  8. 8

    Maunsell, J. H. R. & Newsome, W. A. Rev. Neurosci. 10, 363–401 (1987).

  9. 9

    Van Essen, D. & Maunsell, J. H. R. Trends Neurosci. 6, 370–375 (1983).

  10. 10

    Zeki, S. M. & Shipp, S. Nature 335, 311–317 (1988).

  11. 11

    Shapley, R. & Perry, V. Trends Neurosci. 9, 229–235 (1986).

  12. 12

    Clarke, S. & Miklossy, J. J. comp Neurol. 298, 188–214 (1990).

  13. 13

    Kaplan, E. & Shapley, R. J. Physiol., Lond. 330, 125–143 (1982).

  14. 14

    Kulikowski, J. & Tolhurst, D. J. Physiol., Lond. 232, 149–162 (1973).

  15. 15

    Zihl, J. Brain 106, 313–340 (1983).

  16. 16

    Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G. L. & Petersen, S. E. Science 248, 1556–1559 (1990).

  17. 17

    Watson, J. D. G. et al. Cerebr. Cortex 3, 79–94 (1993).

  18. 18

    Tootell, R. et al. J. Neurosci. 15, 3215–3230 (1995).

  19. 19

    Cheng, K., Fujita, H., Kanno, I., Miura, S. & Tanaka, K. J. Neurophysiol. 74, 413–427 (1995).

  20. 20

    Eden, G., Stein, J., Wood, H. & Wood, F. Cortex 31, 451–469 (1995).

  21. 21

    Eden, G., Stein, J., Wood, H. & Wood, F. Vision Res. 34, 1345–1358 (1994).

  22. 22

    Cornelissen, P., Richardson, A., Mason, A., Fowler, S. & Stein, J. Vision Res. 35, 1483–1494 (1995).

  23. 23

    Ogawa, S. et al. Proc. natn. Acad. Sci. U.S.A. 89, 5951–5955 (1992).

  24. 24

    Kwong, K. K. et al. Proc. natn. Acad. Sci. U.S.A. 80, 5676–5679 (1992).

  25. 25

    Dale, A. et al. Soc. Neurosci. Abstr. 21, 10 (1995).

  26. 26

    Newsome, W. T. & Paré, F. B. J. Neurosci. 8, 2201–2211 (1988).

  27. 27

    Talairach, J. & Tournoux, P. Co-planar Stereotaxic Atlas of the Human Brain (Thieme, New York, 1988).

  28. 28

    Sergent, J., Ohta, S. & MacDonald, B. Brain 115, 15–36 (1995).

  29. 29

    Zeffiro, T. A., Eden, G. F., Woods, R. P. & vanMeter, J. W. Adv. exp. med. Biol. (in the press).

  30. 30

    Woods, R. P., Cherry, S. R. & Mazziota, J. C. J. Comput. assist. Tomogr. 16, 620–633 (1992).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eden, G., VanMeter, J., Rumsey, J. et al. Abnormal processing of visual motion in dyslexia revealed by functional brain imaging. Nature 382, 66–69 (1996). https://doi.org/10.1038/382066a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.