Insect motion detectors matched to visual ecology

Abstract

TO detect motion, primates, birds and insects all use local detectors to correlate signals sampled at one location in the image with those sampled after a delay at adjacent locations1–10. These detectors can adapt to high image velocities by shortening the delay11–13. To investigate whether they use long delays for detecting low velocities, we compared motion-sensitive neurons in ten species of fast-flying insects, some of which encounter low velocities while hovering. Neurons of bee-flies and hawkmoths, which hover, are tuned to lower temporal frequencies than those of butterflies and bumblebees, which do not. Tuning to low frequencies indicates longer delays and extends sensitivity to lower velocities. Hoverflies retain fast temporal tuning but use their high spatial acuity for sensing low-velocity motion. Thus an unexpectedly wide range of spatio-temporal tuning matches motion detection to visual ecology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Egelhaaf, M., Borst, A. & Reichardt, W. J. opt. Soc. Am. A 6, 1070–1087 (1989).

  2. 2

    Borst, A. & Egelhaaf, M. Trends Neurosci. 12, 297–306 (1989).

  3. 3

    Buchner, E. in Photoreception and Vision in Invertebrates (ed. Ali, M. A.) 561–621 (Plenum, New York, 1984).

  4. 4

    Hassenstein, B. & Reichardt, W. Z. Naturf. B 11, 513–524 (1956).

  5. 5

    Reichardt, W. Z. Naturf. B 12, 448–457 (1957).

  6. 6

    Reichardt, W. in Principles of Sensory Communication (ed. Rosenblith, W. A.) 303–317 (Wiley, New York, 1961).

  7. 7

    Barlow, H. B. & Levick, W. R. J. Physiol., Lond. 178, 477–504 (1965).

  8. 8

    Wolf-Oberhollenzer, F. & Kirschfeld, K. J. Neurophysiol. 71, 1559–1573 (1994).

  9. 9

    Wilson, H. R. Biol. Cybern. 51, 213–222 (1985).

  10. 10

    Santen, J. P. H. van & Sperling, G. J. opt. Soc. Am. A 2, 300–321 (1985).

  11. 11

    Maddess, T. & Laughlin, S. B. Proc. R. Soc. Lond. B 225, 251–275 (1985).

  12. 12

    Ruyter van Steveninck, R. de, Zaagman, W. H. & Mastebroek, H. A. K. Biol. Cybem. 54, 223–236 (1986).

  13. 13

    Maddess, T., DuBois, R. A. & Ibbotson, M. R. J. exp. Biol. 161, 171–199 (1991).

  14. 14

    Hausen, K. & Egelhaaf, M. in Facets of Vision (eds Stavenga, D. & Hardie, R. C.) 391–444 (Springer, Berlin, 1989).

  15. 15

    Farina, W. M., Varju, D. & Zhou, Y. J. comp. Physiol. A 174, 239–247 (1994).

  16. 16

    Ibbotson, M. R. & Goodman, L. J. J. exp. Biol. 148, 255–279 (1990).

  17. 17

    Bidwell, N. J. & Goodman, L. J. Apidologie 24, 333–354 (1993).

  18. 18

    Kelly, D. H. J. opt. Soc. Am. A 69, 1340–1349 (1979).

  19. 19

    Burr, D. C. & Ross, J. Vision Res. 22, 479–484 (1982).

  20. 20

    Anderson, S. J. & Burr, D. C. Vision Res. 25, 1147–1154 (1985).

  21. 21

    Morgan, M. J. & Castet, E. Nature 378, 380–383 (1995).

  22. 22

    Collett, T. S. & Land, M. F. J. comp. Physiol. A 99, 1–66 (1975).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

O'Carroll, D., Bidweii, N., Laughlin, S. et al. Insect motion detectors matched to visual ecology. Nature 382, 63–66 (1996). https://doi.org/10.1038/382063a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.