Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Insect motion detectors matched to visual ecology

Abstract

TO detect motion, primates, birds and insects all use local detectors to correlate signals sampled at one location in the image with those sampled after a delay at adjacent locations1–10. These detectors can adapt to high image velocities by shortening the delay11–13. To investigate whether they use long delays for detecting low velocities, we compared motion-sensitive neurons in ten species of fast-flying insects, some of which encounter low velocities while hovering. Neurons of bee-flies and hawkmoths, which hover, are tuned to lower temporal frequencies than those of butterflies and bumblebees, which do not. Tuning to low frequencies indicates longer delays and extends sensitivity to lower velocities. Hoverflies retain fast temporal tuning but use their high spatial acuity for sensing low-velocity motion. Thus an unexpectedly wide range of spatio-temporal tuning matches motion detection to visual ecology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Egelhaaf, M., Borst, A. & Reichardt, W. J. opt. Soc. Am. A 6, 1070–1087 (1989).

    Article  ADS  CAS  Google Scholar 

  2. Borst, A. & Egelhaaf, M. Trends Neurosci. 12, 297–306 (1989).

    Article  CAS  Google Scholar 

  3. Buchner, E. in Photoreception and Vision in Invertebrates (ed. Ali, M. A.) 561–621 (Plenum, New York, 1984).

    Book  Google Scholar 

  4. Hassenstein, B. & Reichardt, W. Z. Naturf. B 11, 513–524 (1956).

    Article  Google Scholar 

  5. Reichardt, W. Z. Naturf. B 12, 448–457 (1957).

    Article  Google Scholar 

  6. Reichardt, W. in Principles of Sensory Communication (ed. Rosenblith, W. A.) 303–317 (Wiley, New York, 1961).

    Google Scholar 

  7. Barlow, H. B. & Levick, W. R. J. Physiol., Lond. 178, 477–504 (1965).

    Article  CAS  Google Scholar 

  8. Wolf-Oberhollenzer, F. & Kirschfeld, K. J. Neurophysiol. 71, 1559–1573 (1994).

    Article  CAS  Google Scholar 

  9. Wilson, H. R. Biol. Cybern. 51, 213–222 (1985).

    Article  CAS  Google Scholar 

  10. Santen, J. P. H. van & Sperling, G. J. opt. Soc. Am. A 2, 300–321 (1985).

    Article  ADS  Google Scholar 

  11. Maddess, T. & Laughlin, S. B. Proc. R. Soc. Lond. B 225, 251–275 (1985).

    ADS  Google Scholar 

  12. Ruyter van Steveninck, R. de, Zaagman, W. H. & Mastebroek, H. A. K. Biol. Cybem. 54, 223–236 (1986).

    Article  Google Scholar 

  13. Maddess, T., DuBois, R. A. & Ibbotson, M. R. J. exp. Biol. 161, 171–199 (1991).

    Google Scholar 

  14. Hausen, K. & Egelhaaf, M. in Facets of Vision (eds Stavenga, D. & Hardie, R. C.) 391–444 (Springer, Berlin, 1989).

    Book  Google Scholar 

  15. Farina, W. M., Varju, D. & Zhou, Y. J. comp. Physiol. A 174, 239–247 (1994).

    Article  Google Scholar 

  16. Ibbotson, M. R. & Goodman, L. J. J. exp. Biol. 148, 255–279 (1990).

    Google Scholar 

  17. Bidwell, N. J. & Goodman, L. J. Apidologie 24, 333–354 (1993).

    Article  Google Scholar 

  18. Kelly, D. H. J. opt. Soc. Am. A 69, 1340–1349 (1979).

    Article  ADS  CAS  Google Scholar 

  19. Burr, D. C. & Ross, J. Vision Res. 22, 479–484 (1982).

    Article  CAS  Google Scholar 

  20. Anderson, S. J. & Burr, D. C. Vision Res. 25, 1147–1154 (1985).

    Article  CAS  Google Scholar 

  21. Morgan, M. J. & Castet, E. Nature 378, 380–383 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Collett, T. S. & Land, M. F. J. comp. Physiol. A 99, 1–66 (1975).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Carroll, D., Bidweii, N., Laughlin, S. et al. Insect motion detectors matched to visual ecology. Nature 382, 63–66 (1996). https://doi.org/10.1038/382063a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/382063a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing