Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spectroscopic evidence for a pseudogap in the normal state of underdoped high-Tc superconductors

Abstract

IT is well known that BCS mean-field theory is remarkably successful in describing conventional superconductors. A central concept of BCS theory is the energy gap in the electronic excitation spectrum below the superconducting transition temperature, Tc. The gap also serves as the order parameter: quite generally, long-range phase coherence and a non-zero gap go hand-in-hand1. But in underdoped high-Tc superconductors there is considerable evidence that a pseudogap (a suppression of spectral weight) is already formed in the normal state above Tc—first, from studies of the spin excitation spectrum2–5,24, which measure a 'spin gap', and later from a variety of other probes6–10. Here we present a study of underdoped Bi2Sr2CaCu2O8+δ (Bi2212) using angle-resolved photoemission spectroscopy (ARPES), which directly measures the momentum-resolved electron excitation spectrum of the CuO2 planes. We find that a pseudogap with d-wave symmetry opens up in the normal state below a temperature T* > Tc, and develops into the d-wave superconducting gap once phase coherence is established below Tc.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schrieffer, J. R. Theory of Superconductivity (Cummings, Reading, 1964).

    MATH  Google Scholar 

  2. Warren, W. W. Jr et al. Phys. Rev. Lett. 62, 1193–1196 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Takigawa, M. et al. Phys. Rev. B43, 247–257 (1991).

    Article  CAS  Google Scholar 

  4. Alloul, H., Mahajan, A., Casalta, H. & Klein, O. Phys. Rev. Lett. 70, 1171–1174 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Rossat-Mignod, J. et al. Physica B186–188, 1–8 (1993).

    Google Scholar 

  6. Homes, C. C., Timusk, T., Liang, R., Bonn, D. A. & Hardy, W. N. Phys. Rev. Lett. 71, 1645–1648 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Basov, D. N., Mook, H. A., Dabrowski, B. & Timusk, T. Phys. Rev. B52, 13141–13144 (1995).

    Article  CAS  Google Scholar 

  8. Loram, J. W., Mirza, K. A., Cooper, J. R. & Liang, W. Y. Phys. Rev. Lett. 71, 1740–1743 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Tallon, J. L., Cooper, J. R., de Silva, P., Williams, G. V. M. & Loram, J. W. Phys. Rev. Lett. 75, 4114–4117 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Batlogg, B. et al. Physica C235–240, 130–133 (1994).

    Article  Google Scholar 

  11. Ding, H. et al. Phys. Rev. Lett. 74, 2784–2787 (1995); 75, 1425 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Shen, Z.-X. et al. Phys. Rev. Lett. 70, 1553–1556 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Norman, M. R., Randeria, M., Ding, H., Campuzano, J. C. & Bellman, A. F. Phys. Rev. B52, 15107–15110 (1995).

    Article  CAS  Google Scholar 

  14. Ding, H. et al. http://xxx.lanl.gov/archive/cond-mat/9603044.

  15. Randeria, M. et al. Phys. Rev. Lett. 74, 4951–4954 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Ding, H. et al. Phys. Rev. Lett. 76, 1533–1536 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Loeser, A. G., Shen, Z.-X. & Dessau, D. S. Physica C263, 208–213 (1996).

    Article  CAS  Google Scholar 

  18. Loeser, A. G. Science (in the press).

  19. Loram, J. W., Mirza, K. A., Wade, J. M., Cooper, J. R. & Liang, W. Y. Physica C235–240, 134–137 (1994).

    Article  Google Scholar 

  20. Randeria, M., Trivedi, N., Moreo, A. & Scalettar, R. T. Phys. Rev. Lett. 69, 2001–2004 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Trivedi, N. & Randeria, M. Phys. Rev. Lett. 75, 312–315 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Emery, V. & Kivelson, S. A. Nature 374, 434–437 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Groen, W. A., de Leeuw, D. M. & Feiner, L. F. Physica C165, 55–61 (1990).

    Article  CAS  Google Scholar 

  24. Imai, J. et al. Physica C162–164, 169–170 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, H., Yokoya, T., Campuzano, J. et al. Spectroscopic evidence for a pseudogap in the normal state of underdoped high-Tc superconductors. Nature 382, 51–54 (1996). https://doi.org/10.1038/382051a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/382051a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing