Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reduction of transcription by homologue asynapsis in Drosophila imaginal discs

Abstract

THE interactions between enhancers and promoter elements that control gene expression are generally considered to act in cis only, but genetic studies suggest that they can also function in trans between non-contiguous DNA molecules. Termed transvection1, such trans interactions have been proposed to be responsible for several examples of intragenic complementation in Drosophila1–9. Transvection is thought to depend on the physical proximity of sister chromosomes10,11, because it is inhibited when chromosome rearrangements reduce the pairing of homologues1,3,5. This led to the suggestion that transvection occurs when enhancer elements on one chromosome regulate expression on the other7,12, with the pairing dependence resulting from a need for proximity between the two copies of the gene. Here we have analysed the levels of transcription from both alleles of the Drosophila Ultra-bithorax (Ubx) gene, and report that the predictions of this simple model are not supported. Our findings indicate a more complex level of trans regulation that may have implications for the aetiology of genetic disorders that are influenced by chromosome rearrangements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lewis, E. B. Am. Nat. 88, 225–239 (1954).

    Article  Google Scholar 

  2. Kornher, J. S. & Brutlag, D. Cell 44, 879–883 (1986).

    Article  CAS  Google Scholar 

  3. Gelbart, W. M. Proc. natn. Acad. Sci. U.S.A. 79, 2636–2640 (1982).

    Article  ADS  CAS  Google Scholar 

  4. Babu, P. & Bhat, S. in Developmental and Neurobiology of Drosophila (eds Siddiqi, O., Babu, P., Hall, L. & Hall, J.) 35–40 (Plenum, New York, 1980).

    Book  Google Scholar 

  5. Jack, J. W. & Judd, B. H. Proc. natn. Acad. Sci. U.S.A. 76, 1368–1372 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Ashburner, M. Nature 214, 1159–1160 (1967).

    Article  ADS  CAS  Google Scholar 

  7. Geyer, P., Green, M. M. & Corces, V. G. EMBO J. 9, 2247–2256 (1990).

    Article  CAS  Google Scholar 

  8. Dreesen, T. D., Henikoff, S. & Loughney, K. Genes Dev. 5, 331–340 (1991).

    Article  CAS  Google Scholar 

  9. Leiserson, W. M., Bonini, N. M. & Benzer, S. Genetics 138, 1171–1179 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Judd, B. H. Cell 53, 841–843 (1988).

    Article  CAS  Google Scholar 

  11. Tartoff, K. D. & Hennikoff, S. Cell 65, 201–203 (1991).

    Article  Google Scholar 

  12. Muller, H. P. & Schaffner, W. Trends Genet. 6, 300–304 (1990).

    Article  CAS  Google Scholar 

  13. Lewis, E. Nature 276, 565–570 (1978).

    Article  ADS  CAS  Google Scholar 

  14. Goldsborough, A. S. & Kornberg, T. B. Proc. natn. Acad. Sci. U.S.A. 91, 12696–12700 (1994).

    Article  ADS  CAS  Google Scholar 

  15. White, R. H. & Wilcox, M. Nature 318, 567–569 (1985).

    Article  ADS  Google Scholar 

  16. Gelbart, W. M. & Wu, C.-T. Genetics 102, 179–189 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zachar, Z., Chapman, C. H. & Bingham, P. M. Cold Spring Harb. Symp. quant. Biol. 50, 337–346 (1985).

    Article  CAS  Google Scholar 

  18. Castelli-Gair, J. E., Micol, J.-L. & García-Bellido, A. Genetics 126, 177–184 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldsborough, A., Kornberg, T. Reduction of transcription by homologue asynapsis in Drosophila imaginal discs. Nature 381, 807–810 (1996). https://doi.org/10.1038/381807a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/381807a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing