Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Turbulent cascades in foreign exchange markets

Abstract

THE availability of high-frequency data for financial markets has made it possible to study market dynamics on timescales of less than a day1. For foreign exchange (FX) rates Müller et al.2 have shown that there is a net flow of information from long to short timescales: the behaviour of long-term traders (who watch the markets only from time to time) influences the behaviour of short-term traders (who watch the markets continuously). Motivated by this hierarchical feature, we have studied FX market dynamics in more detail, and report here an analogy between these dynamics and hydrodynamic turbulence3–8. Specifically, the relationship between the probability density of FX price changes (δx) and the time delay (δt) (Fig. la) is much the same as the relationship between the probability density of the velocity differences (δv) of two points in a turbulent flow and their spatial separation δr (Fig. 1b). Guided by this similarity we claim that there is an information cascade in FX market dynamics that corresponds to the energy cascade in hydrodynamic turbulence. On the basis of this analogy we can now rationalize the statistics of FX price differences at different time delays, which is important for, for example, option pricing. The analogy also provides a conceptual framework for understanding the short-term dynamics of speculative markets.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Proc. lst Int. Conf. on High Frequency Data in Finance (Olsen & Associates, Zürich, 1995).

  2. 2

    Müller, U. A. et al. J. empirical Fin. (in the press).

  3. 3

    Landau, L. D. & Lifshitz, E. M. Fluid Mechanics 2nd edn (Pergamon, Oxford, 1987).

    Google Scholar 

  4. 4

    Monin, A. S. & Yaglom, A. M. Statistical Fluid Mechanics Vols 1 & 2 (ed. Lumely, J.) (MIT Press, Cambridge, MA, 1971 & 1975).

    Google Scholar 

  5. 5

    Kolmogorov, A. N. J. Fluid Mech. 13, 82–85 (1962).

    ADS  MathSciNet  Article  Google Scholar 

  6. 6

    Obukhov, A. M. J. Fluid Mech. 13, 77–81 (1962).

    ADS  MathSciNet  Article  Google Scholar 

  7. 7

    Castaing, B., Gagne, Y. & Hopfinger, E. Physica D46, 177–200 (1990).

    Google Scholar 

  8. 8

    Kolmogorov, A. N. Dokl. Akad. Nauk. SSSR 30, 301–305 (1941).

    ADS  Google Scholar 

  9. 9

    Müller, U. A. et al. J. Banking Fin. 14, 1189–1208 (1990).

    Article  Google Scholar 

  10. 10

    Mantegna, R. N. & Stanley, H. E. Nature 376, 46–49 (1995).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Baillie, R. T. & Bollerslev, T. J. Business econ. Statist. 7, 297–305 (1989); Rev. econ. Stud. 58, 565–585 (1991).

    Google Scholar 

  12. 12

    Vassilicos, J. C. Nature 374, 408–409 (1995).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Chabaud, B. et al. Phys. Rev. Lett. 73, 3227–3230 (1994).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Peinke, J. et al. in Fractals in the Natural and Applied Sciences Vol. A41, (ed. Novak, M. M.) 295–304 (Elsevier Science Amsterdam, 1994).

    Google Scholar 

  15. 15

    Naert, A. et al. J. Phys. II Fr. 4, 215–224 (1994).

    Google Scholar 

  16. 16

    Granger, C. W. & Orr, D. J. J. Am. statist. Ass. 67, 275–285 (1972).

    Google Scholar 

  17. 17

    Clark, P. K. Econometrica 41, 135–155 (1973).

    MathSciNet  Article  Google Scholar 

  18. 18

    Kon, S. J. J. Fin. 39, 147–165 (1984).

    Google Scholar 

  19. 19

    Engle, R. F. Econometrica 50, 987–1007 (1982).

    MathSciNet  Article  Google Scholar 

  20. 20

    Bollerslev, T., Chous, R. Y. & Kroner, K. F. J. Econometrics 52, 5–59 (1992).

    Article  Google Scholar 

  21. 21

    Taylor, S. J. Math. Fin. 4, 183–204 (1994).

    Article  Google Scholar 

  22. 22

    Stolovitzky, G., Sreenivasan, K. R. & Juneja, A. Phys. Rev. E48, 3217–3220 (1993).

    ADS  Google Scholar 

  23. 23

    Anselmet, F., Gagne, Y., Hopfinger, E. J. & Antonia, R. A. J. Fluid Mech. 140, 63–89 (1984).

    ADS  Article  Google Scholar 

  24. 24

    Richardson, L. F. Weather Prediction by Numerical Process 66 (Cambridge Univ. Press, 1922).

    MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ghashghaie, S., Breymann, W., Peinke, J. et al. Turbulent cascades in foreign exchange markets. Nature 381, 767–770 (1996). https://doi.org/10.1038/381767a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing