Abstract
THE adult cortex is thought to undergo plastic changes that are closely dependent on neuronal activity (reviewed in ref. 1), although it is not yet known what molecules are involved. Neurotrophins and their receptors have been implicated in several aspects of developmental plasticity2–4, and their expression in the adult cortex suggests additional roles in adult plasticity5–9. To examine these potential roles in vivo, we used intrinsic-signal optical imaging to quantify the effects of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) on the functional representation of a stimulated whisker in the 'barrel' subdivision of the rat somatosensory cortex. Topical application of BDNF resulted in a rapid and long-lasting decrease in the size of a whisker representation, and a decrease in the amplitude of the activity-dependent intrinsic signal. In contrast, NGF application resulted in a rapid but transient increase in the size of a representation, and an increase in the amplitude of the activity-dependent intrinsic signal. These results demonstrate that neurotrophins can rapidly modulate stimulus-dependent activity in adult cortex, and suggest a role for neurotrophins in regulating adult cortical plasticity.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Neuroimmunologic and Neurotrophic Interactions in Autism Spectrum Disorders: Relationship to Neuroinflammation
NeuroMolecular Medicine Open Access 24 April 2018
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Kaas, J. H. & Gilbert, C. D. in The Cognitive Neurosciences (ed. Gazzaniga, M. S.) 51–90 (MIT Press, Cambridge, MA, 1995).
Maffei, L., Berardi, N., Domenici, L., Parisi, V. & Pizzorusso, T. J. Neurosci. 12, 4651–4662 (1992).
Thoenen, H. Science 270, 593–598 (1995).
Lindholm, D., Castrén, E., Berzaghi, M., Blöchl, A. & Thoenen, H. J. Neurobiol. 25(11), 1362–1372 (1994).
Masana, Y., Wanaka, A., Kato, H., Asai, T. & Tohyama, M. J. Neurosci. Res. 35, 468–479 (1993).
Zhou, X. F., Parada, L. F., Soppet, D. & Rush, R. A. Brain Res. 622, 63–70 (1993).
Pitts, A. F. & Miller, M. W. Somatosens. Mot. Res. 12, 329–342 (1995).
Valenzuela, D. M. et al. Neuron 10, 963–974 (1993).
Holtzman, D. M. et al. J. Neurosci. 15, 1567–1576 (1995).
Grinvald, A., Lieke, E., Frostig, R. D., Gilbert, C. D. & Wiesel, T. N. Nature 324, 361–364 (1986).
Ts'o, D. Y., Frostig, R. D., Lieke, E. E. & Grinvald, A. Science 249, 417–420 (1990).
Frostig, R. D., Lieke, E. E., Ts'o, D. Y. & Grinvald, A. Proc. natn. Acad. Sci. U.S.A. 87, 6082–6086 (1990).
Masino, S. A., Kwon, M. C., Dory, Y. & Frostig, R. D. Proc. natn. Acad. Sci. U.S.A. 90, 9998–10002 (1993).
Chen, C., Kwon, M. C., Masino, S. A. & Frostig, R. D. J. Neurosci. Meth. (in the press).
Masino, S. A. & Frostig, R. D. Proc. natn. Acad. Sci. U.S.A. 93, 5022–5027 (1996).
Frostig, R. D., Masino, S. A. & Kwon, M. C. Soc. Neurosci. Abstr. 20, 1384 (1994).
Malonek, D., Shoham, D., Ratzlaff, E. & Grinvald, A. Soc. Neurosci. Abstr. 16, 292 (1990).
Mizuno, K., Carnahan, J. & Nawa, H. Devl Biol. 165, 243–256 (1994).
Altar, C. A. et al. Exp. Neurol. 130, 31–40 (1994).
Leßmann, V., Gottmann, K. & Heumann, R. NeuroReport 6(1), 21–25 (1994).
Cellerino, A., Burkhalter, A., Maffei, L. & Domenici, L. Soc. Neurosci. Abstr. 21, 2010 (1995).
Cuello, A. C., Maysinger, D. & Garofalo, L. Molec. Neurobiol. 6(4), 451–461 (1993).
Knipper, M., Leung, L. S., Zhao, D. & Rylett, J. NeuroReport 5, 2433–2436 (1994).
Racamora, N., Welker, E., Soriano, E., Planas, A. M. & Van der Loos, H. Soc. Neurosci.Abstr. 19, 259 (1993).
Castrén, E., Zafra, F., Thoenen, H. & Lindholm, D. Proc. natn. Acad. Sci. U.S.A. 89, 9444–9448 (1992).
Levine, E. S., Dreyfus, C. F., Black, I. B. & Plummer, M. R. Proc. natn. Acad. Sci. U.S.A. 92, 8074–8077 (1995).
Kang, H. & Schuman, E. M. Science 267, 1658–1662 (1995).
Knipper, M., Beck, A., Rylett, J. & Breer, H. NeuroReport 4, 483–486 (1993).
Blöchl, A. & Thoenen, H. Eur. J. Neurosci. 7, 1220–1228 (1995).
Nawa, H., Pelleymounter, M. A. & Carnahan, J. J. Neurosci. 14(6), 3751–3765 (1994).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Prakash, N., Cohen-Cory, S. & Frostig, R. Rapid and opposite effects of BDNF and NGF on the functional organization of the adult cortex in vivo. Nature 381, 702–706 (1996). https://doi.org/10.1038/381702a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/381702a0
This article is cited by
-
Neuroimmunologic and Neurotrophic Interactions in Autism Spectrum Disorders: Relationship to Neuroinflammation
NeuroMolecular Medicine (2018)
-
What Has Intrinsic Signal Optical Imaging Taught Us About NGF-Induced Rapid Plasticity in Adult Cortex and Its Relationship to the Cholinergic System?
Molecular Imaging and Biology (2005)
-
Naturalistic experience transforms sensory maps in the adult cortex of caged animals
Nature (2004)
-
Abnormal expression of brain-derived neurotrophic factor and its receptor in the corticolimbic system of schizophrenic patients
Molecular Psychiatry (2000)
-
Cytokine and growth factor involvement in schizophrenia—support for the developmental model
Molecular Psychiatry (2000)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.