Letter | Published:

A human Mad protein acting as a BMP-regulated transcriptional activator

Abstract

THE TGF-β/activin/BMP cytokine family signals through serine/threonine kinase receptors, but how the receptors transduce the signal is unknown. The Mad (Mothers against decapentaplegic) gene from Drosophila1 and the related Sma genes from Caenorhabditis elegans2 have been genetically implicated in signalling by members of the bone-morphogenetic-protein (BMP) subfamily. We have cloned Smad1, a human homologue of Mad and Sma. Microinjection of Smad1 messenger RNA into Xenopus embryo animal caps mimics the mesoderm-ventralizing effects of BMP4. Smad1 moves into the nucleus in response to BMP4. Smad1 has transcriptional activity when fused to a heterologous DNA-binding domain, and this activity is increased by BMP4 acting through BMP-receptor types I and II. The transactivating activity resides in the conserved carboxy-terminal domain of Smad1 and is disrupted by a nonsense mutation that corresponds to null mutations found in Mad and in the related gene DPC4, a candidate tumour-suppressor gene in human pancreatic cancer3. Additionally, we show that DPC4 contains a transcriptional activation domain. The results suggests that the Smad proteins are a new class of transcription factors that mediate responses to the TGF-β family.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Sekelsky, J. J., Newfeld, S. J., Raftery, L. A., Chartoff, E. H. & Gelbart, W. M. Genetics 139, 1347–1358 (1995).

  2. 2

    Savage, C. et al. Proc. natn. Acad. Sci. U.S.A. 93, 790–794 (1996).

  3. 3

    Hahn, S. A. et al. Science 271, 350–353 (1996).

  4. 4

    Dale, L., Howes, G., Price, B. M. J. & Smith, J. C. Development 115, 573–585 (1992).

  5. 5

    Jones, C. M., Lyons, K. M., Lapan, P. M., Wright, C. V. E. & Hogan, B. L. M. Development 115, 639–647 (1992).

  6. 6

    Graff, J. M., Thies, R. S., Song, J. J., Celeste, A. J. & Melton, D. A. Cell 79, 169–179 (1994).

  7. 7

    Suzuki, A. et al. Proc. natn. Acad. Sci. U.S.A. 91, 10255–10259 (1994).

  8. 8

    Harland, R. M., Proc. natn. Acad. Sci. U.S.A. 91, 10243–10246 (1994).

  9. 9

    Cárcamo, J. et al. Molec. cell. Biol. 14, 3810–3821 (1994).

  10. 10

    Ptashne, M. Nature 335, 683–689 (1988).

  11. 11

    Lillie, J. W. & Green, M. R. Nature 338, 39–44 (1989).

  12. 12

    Liu, F., Ventura, F., Doody, J. & Massagué, J. Molec. cell. Biol. 15, 3479–3486 (1995).

  13. 13

    Rosenzweig, B. L. et al. Proc. natn. Acad. Sci. U.S.A. 92, 7632–7636 (1995).

  14. 14

    Lennon, G. G., Auffray, C., Polymeropoulos, M. & Soares, M. B. Genomics (in the press).

  15. 15

    Rupp, R. A. & Weintraub, H. Cell 65, 927–937 (1991).

  16. 16

    Wilson, P. A. & Melton, D. A. Curr. Biol. 4, 676–686 (1994).

  17. 17

    Lamb, T. M. et al. Science 262, 713–718 (1993).

  18. 18

    Sadowski, I. & Ptashne, M. Nucleic Acids Res. 17, 7539 (1989).

  19. 19

    Wrana, J. L., Attisano, L., Wieser, R., Ventura, F. & Massagué, J. Nature 370, 341–347 (1994).

  20. 20

    Gorman, C. M., Moffat, L. F. & Howard, B. H. Molec. cell. Biol. 2, 1044–1051 (1982).

  21. 21

    Liu, F. & Green, M. R. Cell 61, 1217–1224 (1990).

  22. 22

    Hoodless, P. A. et al. Cell 85, 489–500 (1996).

  23. 23

    Graff, J. M., Bansal, A. & Melton, D. A. Cell 85, 479–487 (1996).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.