Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Role of orbitally induced changes in tundra area in the onset of glaciation

Abstract

THE link between glacial–interglacial cycles and changes in insolation due to variations in the Earth's orbital parameters is well established1–4. But of the attempts to simulate incipient glaciation using three-dimensional general circulation models (GCMs) driven by orbital forcing alone5–10, only one10 has been successful. GCM experiments7,11 show that reduced summer insolation 115,000 years ago (during an interglacial-to-glacial climate shift) produces sufficient high-latitude cooling to cause expansion of tundra at the expense of boreal forest11, which in turn can induce more cooling11–14. Here we show, using a global climate model, that the increase in surface albedo (under snow-covered conditions) that results from a biome model estimate11 of tundra expansion 115,000 years ago is sufficient to induce glaciation over extreme-northeastern Canada. If the additional cooling from this estimated tundra expansion induces further expansion, then widespread glaciation occurs at latitudes above 65° N. These results suggest that the climate feedback from high-latitude tundra expansion might have contributed to the onset of the most recent glaciation.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Hays, J. D., Imbrie, J. & Shackleton, N. J. Science 194, 1121–1132 (1976).

    ADS  CAS  Article  Google Scholar 

  2. Imbrie, J. & Imbrie, K. P. Science 207, 943–953 (1980).

    ADS  CAS  Article  Google Scholar 

  3. Imbrie, J. et al. Paleoceanography 7, 701–738 (1992).

    ADS  Article  Google Scholar 

  4. Imbrie, J. et al. Paleoceanography 8, 699–735 (1993).

    ADS  Article  Google Scholar 

  5. Rind, D., Peteet, D. & Kukla, G. J. geophys. Res. 94, 12851–12871 (1989).

    ADS  Article  Google Scholar 

  6. Royer, J. F., Déqué, M. & Pestiaux, P. in Milankovitch and Climate (eds Berger, A. L, Imbrie, J., Hays, J., Kukla, G. & Saltzman, B.) 733–764 (Reidel, Hingham, MA, 1984).

    Book  Google Scholar 

  7. Gallimore, R. G. & Kutzbach, J. E. J. geophys. Res. 100, 1103–1120 (1995).

    ADS  Article  Google Scholar 

  8. Phillipps, P. J. & Held, I. M. J. Climate 7, 767–782 (1994).

    ADS  Article  Google Scholar 

  9. Mitchell, J. F. B. Phil. Trans. R. Soc. Lond. B 341, 267–275 (1993).

    Article  Google Scholar 

  10. Dong, B. & Valdes, P. J. J. Climate 8, 2471–2496 (1995).

    ADS  Article  Google Scholar 

  11. Harrison, S. P., Kutzbach, J. E., Prentice, I. C., Behling, P. J. & Sykes, M. T. Quat Res. 43, 174–184 (1995).

    Article  Google Scholar 

  12. Bonan, G. B., Pollard, D. & Thompson, S. L. Nature 359, 716–718 (1992).

    ADS  Article  Google Scholar 

  13. Foley, J., Kutzbach, J. E., Coe, M. T. & Levis, S. Nature 371, 52–54 (1994).

    ADS  Article  Google Scholar 

  14. Berger, A., Gallée, H. & Tricot, C. J. Glaciol. 39, 45–49 (1993).

    ADS  Article  Google Scholar 

  15. Covey, C. & Thompson, S. L. Paleogeogr. Paleoclimatol. Palaeoecoi. 76, 331–341 (1989).

    ADS  Article  Google Scholar 

  16. Barnola, J.-M., Pimienta, P., Raynaud, D. & Korotkevich, Y. S. Tellus 43B, 83–90 (1991).

    ADS  CAS  Article  Google Scholar 

  17. Ramanathan, V., Lian, M. S. & Cess, R. D. J. geophys. Res. 84, 4949–4958 (1979).

    ADS  Article  Google Scholar 

  18. Oglesby, R. J. & Saltzman, B. J. Climate 5, 66–92 (1992).

    ADS  Article  Google Scholar 

  19. Huntley, B. & Webb, T., III. (eds) Vegetation History (Kluwer, Dordrecht, 1988).

    Google Scholar 

  20. Pons, A., Guiot, J., de Beaulieu, J. L. & Reille, M. Quat. Sci. Rev. 11, 439–448 (1992).

    ADS  Article  Google Scholar 

  21. de Vernal, A., Miller, G. H. & Hillaire-Marcel, C. Quat. Int. 10–12, 95–106 (1991).

    Article  Google Scholar 

  22. Robinson, D. A. & Kukla, G. J. Clim. appl. Met. 24, 402–411 (1985).

    Article  Google Scholar 

  23. Boulton, G. S. & Clark, C. D. Trans. R. Soc. Edinb. 82, 327–347 (1990).

    Article  Google Scholar 

  24. Climate Mapping and Prediction (CLIMAP) Series MC-36 (Geological Society of America, 1981).

  25. Peltier, W. R. Science 265, 195–201 (1994).

    ADS  CAS  Article  Google Scholar 

  26. Berger, A. et al. Trans. R. Soc. Edinb. 82, 357–369 (1990).

    Article  Google Scholar 

  27. Chappell, J. & Shackleton, N. J. Nature 324, 137–140 (1986).

    ADS  CAS  Article  Google Scholar 

  28. Bromwich, D. H., Tzeng, R.-Y. & Parish, T. R. J. Climate 7, 1051–1069 (1994).

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gallimore, R., Kutzbach, J. Role of orbitally induced changes in tundra area in the onset of glaciation. Nature 381, 503–505 (1996). https://doi.org/10.1038/381503a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/381503a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing