Efficient integration of an intron RNA into double-stranded DNA by reverse splicing


SOME group II introns are mobile elements as well as catalytic RNAs1,2. Introns aI1 and aI2 found in the gene COX1 in yeast mitochondria encode reverse transcriptases which promote site-specific insertion of the intron into intronless alleles ('homing')3–6. For aI2 this predominantly occurs by reverse transcription of unspliced precursor RNA at a break in double-strand DNA made by an endonuclease encoded by the intron7. The aI2 endonuclease involves both the excised intron RNA, which cleaves the DNA's sense strand by partial reverse splicing; and the intron-encoded reverse transcriptase which cleaves the antisense strand8. Here we show that aI1 encodes an analogous endonuclease specific for a different target site compatible with the different exon-binding sequences of the intron RNA. Over half of aI1 undergoes complete reverse splicing in vitro, thus integrating linear intron RNA directly into the DNA. This unprecedented reaction has implications for both intron mobility and evolution, and potential genetic engineering applications.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Lambowitz, A. M. & Belfort, M. A. Rev. Biochem. 62, 587–622 (1993).

  2. 2

    Michel, F. & Ferat, J.-L. A. Rev. Biochem. 64, 435–461 (1995).

  3. 3

    Meunier, B., Tian, G.-L., Macadre, C., Slonimski, P. P. & Lazowska, J. in Structure, Function and Biogenesis of Energy Transfer Systems (eds Quagliariello, E., Papa, S., Palmieri, F. & Saccone, C.) 169–174 (Elsevier Scientific, Amsterdam, 1990).

  4. 4

    Kennell, J. C., Moran, J. V., Perlman, P. S., Butow, R. A. & Lambowitz, A. M. Cell 73, 133–146 (1993).

  5. 5

    Lazowska, J., Meunier, B. & Macadre, C. EMBO J. 13, 4963–4972 (1994).

  6. 6

    Moran, J. V. et al. Molec. cell. Biol. 15, 2828–2838 (1995).

  7. 7

    Zimmerly, S., Guo, H., Perlman, P. S. & Lambowitz, A. M. Cell 82, 545–554 (1995).

  8. 8

    Zimmerly, S. et al. Cell 83, 529–538 (1995).

  9. 9

    Moran, J. V. et al. Nucleic Acids Res. 22, 2057–2064 (1994).

  10. 10

    Herschlag, D. & Cech, T, R. Nature 344, 405–409 (1990).

  11. 11

    Robertson, D. L. & Joyce, G. F. Nature 344, 467–468 (1990).

  12. 12

    Mörl, M., Niemer, I. & Schmelzer, C. Cell 70, 803–810 (1992).

  13. 13

    Mörl, M. & Schmelzer, C. Cell 60, 629–636 (1990).

  14. 14

    Mörl, M. & Schmelzer, C. Nucleic Acids Res. 18, 6545–6551 (1990).

  15. 15

    Mueller, M. W., Allmaier, M., Eskes, R. & Schweyen, R. J. Nature 366, 174–176 (1993).

  16. 16

    Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual 2nd edn (Cold Spring Harbor Laboratory, New York, 1989).

  17. 17

    Hebbar, S. K., Belcher, S. M. & Perlman, P. S. Nucleic Acids Res. 20, 1747–1754 (1992).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.