Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration

Abstract

THE global budget for sources and sinks of anthropogenic CO2 has been found to be out of balance unless the oceanic sink is supplemented by an additional 'missing sink', plausibly associated with land biota1,25. A similar budgeting problem has been found for the Northern Hemisphere alone2,3, suggesting that northern land biota may be the sought-after sink, although this interpretation is not unique2–5; to distinguish oceanic and land carbon uptake, the budgets rely variously, and controversially, on ocean models2,6,7, 13CO2/12CO2 data2,4,5, sparse oceanic observations of p C O 2 (ref. 3) or 13C/12C ratios of dissolved inorganic carbon,4,5,8 or single-latitude trends in atmospheric O2 as detected from changes in O2/N2 ratio.9,10 Here we present an extensive O2/N2 data set which shows simultaneous trends in O2/N2 in both northern and southern hemispheres and allows the O2/N2 gradient between the two hemispheres to be quantified. The data are consistent with a budget in which, for the 1991–94 period, the global oceans and the northern land biota each removed the equivalent of approximately 30% of fossil-fuel CO2 emissions, while the tropical land biota as a whole were not a strong source or sink.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Watson, R. T., Rodhe, H., Oeschger, H. & Siegenthaler, U. in Climate Change, The IPCC Scientific Assessment (eds Houghton, J.T., Jenkins, G. J. & Ephraums, J. J.) 1–40 (Cambridge Univ. Press, Cambridge, 1990).

    Google Scholar 

  2. 2

    Keeling, C. D., Piper, S. C. & Heimann, M. in Aspects of Climate Variability in the Pacific and Western Americas (ed. Peterson, D. H.) 305–363 (Geophys. Monogr. 55, American Geophysical Union, Washington DC, 1989).

    Google Scholar 

  3. 3

    Tans, P. P., Fung, I. Y. & Takahashi, T. Science 247, 1431–1438 (1990).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Ciais, P. et al. J. geophys. Res. 100, 5051–5070 (1995).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Ciais, P., Tans, P. P., Trolier, M., White, J. W. C. & Francey, R. J. Science 269, 1098–1102 (1995).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Keeling, C. D. et al. in Aspects of Climate Variability in the Pacific and Western Americas (ed. Peterson, D. H.) 165–236 (Geophys. Monogr. 55, American Geophysical Union, Washington DC, 1989).

    Google Scholar 

  7. 7

    Siegenthaler, U. & Sarmiento, J. L. Nature 365, 119–125 (1993).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Quay, P. D., Tilbrook, B. & Wong, C. S. Science 256, 74–79 (1992).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Keeling, R. F. & Shertz, S. R. Nature 358, 723–727 (1992).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Bender, M., Ellis, T., Tans, P. P. & Francey, R. J. and Lowe, D. Global biogeochem. Cycles 10, 9–21 (1996).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Conway, T. J. et al. J. geophys. Res. 99, 22831–22855 (1994).

    ADS  Article  Google Scholar 

  12. 12

    Keeling, C. D., Whorf, T. P., Wahlen, M. & van der Plicht, J. Nature 375, 666–670 (1995).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Broecker, W. S. & Peng, T.-H. Nature 356, 587–589 (1992).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Keeling, R. F., Najjar, R. G., Bender, M. L. & Tans, P. P. Global biogeochem. Cycles 7, 37–67 (1993).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Keeling, R. F. & Peng, T.-H. Phil. Trans. R. Soc. Lond. B 348, 133–142 (1995).

    CAS  Article  Google Scholar 

  16. 16

    Heimann, M. The Global Atmospheric Tracer Model TM2 (Tech. Rep. No. 10, Deutsches Klimarechenzentrum, Hamburg, 1995).

    Google Scholar 

  17. 17

    Brewer, P. G., Goyet, C. & Dyrssen, D. Science 246, 477–479 (1989).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Tarantola, A. and Valette, B. Rev. Geophys. Space. Phys. 20, 219–232 (1982).

    ADS  MathSciNet  Article  Google Scholar 

  19. 19

    Denning, A. S., Fung, I. Y. & Randall, D. A. Nature 243, 240–243 (1995).

    ADS  Article  Google Scholar 

  20. 20

    Heimann, M. and Keeling, C. D. in Aspects of Climate Variability in the Pacific and Western Americas (ed. Peterson, D. H.) 237–275 (Geophys. Monogr. 55, American Geophysical Union, Washington DC, 1989).

    Google Scholar 

  21. 21

    Grace, J. et al. Science 270, 778–780 (1995).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Six, K. & Maier-Reimer, E. Global biogeochem. Cycles (submitted).

  23. 23

    Keeling, R. F. & Severinghaus, J. P. in The Carbon Cycle (eds Wigley, T. M. & Schimel, D.) (Cambridge Univ. Press, in the press).

  24. 24

    Francey, R. J. et al. Nature 373, 326–330 (1995).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Schimel, D. et al. in Climate Change 1994, Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios (eds Houghton, J. T. et al.) 35–71 (Cambridge Univ. Press, 1995).

    Google Scholar 

  26. 26

    Marland, G., Rotty, R. M. & Treat, N. L. Tellus 37B, 243–258 (1985).

    ADS  CAS  Article  Google Scholar 

  27. 27

    Andres, R. J., Marland, G., Boden, T. & Bischoff, S. The Carbon Cycle (eds Wigley, T. M. & Schimel, D.) (Cambridge Univ. Press, in the press).

  28. 28

    Hein, R., Crutzen, P. J. & Heimann, M. Global biogeochem. Cycles (in the press).

  29. 29

    Sarmiento, J. L., Orr, J. C. & Siegenthaler, U. J. geophys. Res. 97, 3621–3645 (1992).

    ADS  CAS  Article  Google Scholar 

  30. 30

    Watson, A. J., Nightingale, P. D. & Cooper, D. J. Phil. Trans. R. Soc. Lond. B 348, 125–132 (1995).

    CAS  Article  Google Scholar 

  31. 31

    Sarmiento, J. L., Murnane, R. & Le Quéré, C. Phil. Trans. R. Soc. Lond. B 348, 211–219 (1995).

    CAS  Article  Google Scholar 

  32. 32

    Keeling, R. F. thesis, Harvard Univ. (1988).

  33. 33

    Severinghaus, J. P. thesis, Columbia Univ. (1995).

  34. 34

    Keeling, R. F. J. atmos. Chem. 7, 153–176 (1988).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Keeling, R., Piper, S. & Heimann, M. Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration. Nature 381, 218–221 (1996). https://doi.org/10.1038/381218a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing