Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cosmological baryon density derived from the deuterium abundance at redshift z = 3.57

Abstract

THE primordial ratio of deuterium to hydrogen nuclei (D/H), created as a result of the Big Bang, provides the most sensitive measure of the cosmological density of baryons1–5. Measurements of the D/H ratio in the interstellar medium of our Galaxy place a strict lower limit on the primordial ratio6, because processing of gas by stars reduces the abundance of deuterium relative to hydrogen. Absorption of radiation from distant quasars by intervening clouds of gas offers a means of probing D/H ratios at large redshifts, where the effects of stellar processing should be negligible. Measurements7,8 on one absorption system have indicated an extremely high primordial abundance ratio of 24 × 10–5. Here we report a measurement of the D/H ratio in another high-redshift absorption system, and obtain a value that is an order of magnitude lower than that reported previously7,8. The measured ratio of 2.3 × 10–5 is consistent with that in the interstellar medium (after allowing for Galactic chemical evolution9,10), and indicates that the absorption spectra on which the earlier estimates are based may have been subject to strong contamination. We calculate a baryon density that is 5% of the critical density required to close the Universe.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Walker, T. P., Steigman, G., Schramm, D. N., Olive, K. A. & Kang, H. S. Astrophys. J. 376, 51–69 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Smith, M. S., Kawano, L. H. & Malaney, R. A. Astrophys. J. Suppl. Ser. 85, 219–247 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Krauss, L. M. & Kernan, P. J. Phys. Lett. B347, 347–353 (1995).

    Article  CAS  Google Scholar 

  4. Sarkar, S. Rep. Prog. Phys. (submitted).

  5. Copi, C. J., Schramm, D. N. & Turner, M. S. Science 267, 192–199 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Linsky, J. L. et al. Astrophys. J. 451, 335–351 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Songaila, A., Cowie, L. L., Hogan, C. J. & Rugers, M. Nature 368, 599–603 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Carswell, R. F., Rauch, M., Weymann, R. J., Cooke, A. J. & Webb, J. K. Mon. Not. R. astr. Soc. 268, L1–L4 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Edmunds, M. G. Mon. Not. R. astr. Soc. 270, L37–L41 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Steigman, G. & Tosi, M. Astrophys. J. 453, 173–177 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Petitjean, P. & Bergeron, J. Astr. Astrophys. 231, 309–326 (1990).

    ADS  CAS  Google Scholar 

  12. Vogt, S. S. et al. Proc. SPIE 2198, 362–375 (1994).

    Article  ADS  CAS  Google Scholar 

  13. Hu, E. M., Kim, T. S., Cowie, L. L. & Songaila, A. Astr. J. 110, 1526–1543 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Donahue, M. & Shull, J. M. Astrophys. J. 383, 511–523 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Mathews, W. D. & Ferland, G. Astrophys. J. 323, 456–467 (1987).

    Article  ADS  CAS  Google Scholar 

  16. Steigman, G. & Tosi, M. Astrophys. J. 401, 150–156 (1992).

    Article  ADS  Google Scholar 

  17. Wampler, E. J. et al. Astr. Astrophys. (submitted).

  18. Carswell, R. F. et al. Mon. Not. R. astr. Soc. 278, 506–518 (1996).

    Article  ADS  CAS  Google Scholar 

  19. McCullough, P. R. Astrophys. J. 390, 213–218 (1992).

    Article  ADS  CAS  Google Scholar 

  20. Galli, D., Palla, F., Ferrini, F. & Penco, U. Astrophys. J. 443, 536–550 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Geiss, J. in Origin and Evolution of the Elements (eds Prantzos, N., Vangioni-Flam, E. & Cassé, M.) 89 (Cambridge Univ. Press, 1994).

    Google Scholar 

  22. Persic, M. & Salucci, P. Mon. Not. R. astr. Soc. 258, 14–18 (1992).

    Article  ADS  Google Scholar 

  23. Pratt, M. et al. (MACHO collaboration) Workshop on Dark Matter in the Universe Santa Monica, February (1996).

  24. Jakobsen, P. et al. Nature 370, 35–39 (1994).

    Article  ADS  CAS  Google Scholar 

  25. Pagel, B. E. J., Simonson, E. A., Terlevich, R. J. & Edmunds, M. G. Mon. Not. R. astr. Soc. 255, 325–345 (1992).

    Article  ADS  CAS  Google Scholar 

  26. Thuan, T. X., Izotov, Y. I. & Lipovetsky, V. A. in Interplay between Massive Star formation, the ISM and Galaxy Evolution (eds Kunth, D., Guiderdoni, B., Heydari-Malayeri, M. & Thuan, T. X.) (Editions Frontieres Gif-sur-Yvette, 1996).

    Google Scholar 

  27. Sasselov, D. & Goldwirth, D. Astrophys. J. 444, L5–L8 (1995).

    Article  ADS  CAS  Google Scholar 

  28. Pagel, B. E. J. in ESO/EIPC Workshop on Light Elements (ed. Crane, P.) 155–164 (Springer, Berlin, 1994).

    Google Scholar 

  29. Vauclaire, S. & Charbonnel, C. Astr. Astrophys. 295, 715–724 (1995).

    ADS  Google Scholar 

  30. Charbonnel, C. Astrophys. J. 453, L41–L44 (1995).

    Article  ADS  CAS  Google Scholar 

  31. Ryan, S. G., Beers, T. C., Deliyannis, C. P. & Thorburn, J. A. Astrophys. J. 458, 543–560 (1996).

    Article  ADS  CAS  Google Scholar 

  32. Morton, D. C. Astrophys. J. Suppl. Ser. 77, 119–202 (1991).

    Article  ADS  CAS  Google Scholar 

  33. Levshakov, S. A. & Kegel, W. H. Mon. Not. R. astr. Soc. 278, 497–505 (1996).

    Article  ADS  CAS  Google Scholar 

  34. Gail, H. P., Hundt, E., Kegel, W. H., Schmid-Burgk, J. & Traving, G. Astr. Astrophys. 32, 65–72 (1974).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tytler, D., Fan, XM. & Burles, S. Cosmological baryon density derived from the deuterium abundance at redshift z = 3.57. Nature 381, 207–209 (1996). https://doi.org/10.1038/381207a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/381207a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing