Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Crystal structure of the kinesin motor domain reveals a structural similarity to myosin


KINESIN is the founding member of a superfamily of microtubule-based motor proteins that perform force-generating tasks such as organelle transport and chromosome segregation1,2. It has two identical 960-amino-acid chains containing an ammo-terminal globular motor domain, a central α-helical region that enables dimer formation through a coiled-coil, and a carboxy-terminal tail domain that binds light chains and possibly an organelle receptor1. The kinesin motor domain of 340 amino acids, which can produce movement in vitro3, is much smaller than that of myosin (850 amino acids) and dynein (1,000 amino acids), and is the smallest known molecular motor. Here, we report the crystal structure of the human kinesin motor domain with bound ADP determined to 1.8-Å resolution by X-ray crystallography. The motor consists primarily of a single α/β arrowhead-shaped domain with dimensions of 70×45×45 Å. Unexpectedly, it has a striking structural similarity to the core of the catalytic domain of the actin-based motor myosin. Although kinesin and myosin have virtually no amino-acid sequence identity, and exhibit distinct enzymatic4–6 and motile7–10 properties, our results suggest that these two classes of mechanochemical enzymes evolved from a common ancestor and share a similar force-generating strategy.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. Bloom, G. & Endow, S. Motor Proteins 1: Kinesin (Academic, London, 1994).

    Google Scholar 

  2. Goldstein, L. S. A. Rev. Genet. 27, 319–351 (1993).

    CAS  Article  Google Scholar 

  3. Yang, J. T., Saxton, W. M., Stewart, R. J., Raff, E. C. & Goldstein, L. S. Science 249, 42–47 (1990).

    ADS  CAS  Article  Google Scholar 

  4. Hackney, D. D. Proc. natn. Acad. Sci. U.S.A. 85, 6314–6318 (1988).

    ADS  CAS  Article  Google Scholar 

  5. Gilbert, S. P., Webb, M. R., Brune, M. & Johnson, K. A. Nature 373, 671–676 (1995).

    ADS  CAS  Article  Google Scholar 

  6. Ma, Y. Z. & Taylor, E. W. Biochemistry 34, 13233–13241 (1995).

    CAS  Article  Google Scholar 

  7. Howard, J., Hudspeth, A. J. & Vale, R. D. Nature 342, 154–158 (1989).

    ADS  CAS  Article  Google Scholar 

  8. Block, S. M., Goldstein, L. S. & Schnapp, B. J. Nature 348, 348–352 (1990).

    ADS  CAS  Article  Google Scholar 

  9. Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. Naqture 365, 721–727 (1993).

    ADS  CAS  Google Scholar 

  10. Coppin, C. M., Finer, J. T., Spudich, J. A. & Vale, R. D. Proc. natn. Acad. Sci. U.S.A. (in the press).

  11. Story, R. M. & Steitz, T. A. Nature 355, 374–376 (1992).

    ADS  CAS  Article  Google Scholar 

  12. Holm, L. & Sander, C. J. molec. Biol. 233, 123–138 (1993).

    CAS  Article  Google Scholar 

  13. Bagshaw, C. R. & Trentham, D. R. Biochem. J. 141, 331–349 (1974).

    CAS  Article  Google Scholar 

  14. Grammar, J. C., Kuwayama, H. & Yount, R. G. Biochemistry 32, 5752–5732 (1993).

    Article  Google Scholar 

  15. Fisher, A. J. et al. Biochemistry 34, 8960–8972 (1995).

    CAS  Article  Google Scholar 

  16. Taylor, E. W. in The Heart and Cardiovascular System (ed. Fozzard, H. A.) 1281–1293 (Raven, New York, 1992).

    Google Scholar 

  17. Yount, R. G., Cremo, C. R., Grammar, J. C. & Kerwin, B. A. Phil. Trans. R. Soc. Lend. B 336, 55–61 (1992).

    ADS  CAS  Article  Google Scholar 

  18. Sablin, E. P., Kull, F. J., Cooke, R., Vale, R. D. & Fletterick, R. J. Nature 380, 555–559 (1996).

    ADS  CAS  Article  Google Scholar 

  19. Whittaker, M. et al. Nature 378, 748–751 (1996).

    ADS  Article  Google Scholar 

  20. Jontes, J. D., Wilson-Kubalek, E. M. & Milligan, R. A. Nature 378, 751–753 (1995).

    ADS  CAS  Article  Google Scholar 

  21. Peskin, C. S. & Oster, G. Biophys. J. 68, 202s–211s (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Vale, R. D. et al. Nature 380, 451–453 (1996).

    ADS  CAS  Article  Google Scholar 

  23. Berliner, E., Young, E. C., Anderson, K., Mahtani, H. K. & Gelles, J. Nature 373, 718–721 (1995).

    ADS  CAS  Article  Google Scholar 

  24. Spudich, J. A. Nature 372, 515–518 (1994).

    ADS  CAS  Article  Google Scholar 

  25. Navone, F. et al. J. Cell Biol. 117, 1263–1275 (1992).

    CAS  Article  Google Scholar 

  26. Fujiwara, S., Kull, F. J., Sablin, E. P., Stone, D. B. & Mendelson, R. A. Biophys. J. 69, 1563–1568 (1995).

    ADS  CAS  Article  Google Scholar 

  27. Naber, N., Matuska, M., Sablin, E. P., Pate, E. & Cooke, R. Protein Sci. 4, 1824–1831 (1995).

    CAS  Article  Google Scholar 

  28. McRee, D. E. Practical Protein Crystallography (Academic, San Deigo, 1993).

    Google Scholar 

  29. Collaborative Computing Project No. 4 Acta crystallogr. D50, 760–763 (1994).

  30. Brunger, A. T. X-PLOR Version 3.1. A system forX-ray Crystallography and NMR (Yale Univ. Press, New Haven, CT, 1992).

    Google Scholar 

  31. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. J. appl. Crystallogr. 26, 283–291 (1993).

    CAS  Article  Google Scholar 

  32. Kraulis, P. J. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  33. Rayment, I. et al. Science 261, 58–65 (1993).

    ADS  CAS  Article  Google Scholar 

  34. Wells, J. A. & Yount, R. G. Proc. natn. Acad. Sci. U.S.A. 76, 4966–4970 (1979).

    ADS  CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jon Kull, F., Sablin, E., Lau, R. et al. Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature 380, 550–555 (1996).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing