Abstract
KINESIN is the founding member of a superfamily of microtubule-based motor proteins that perform force-generating tasks such as organelle transport and chromosome segregation1,2. It has two identical ∼960-amino-acid chains containing an ammo-terminal globular motor domain, a central α-helical region that enables dimer formation through a coiled-coil, and a carboxy-terminal tail domain that binds light chains and possibly an organelle receptor1. The kinesin motor domain of ∼340 amino acids, which can produce movement in vitro3, is much smaller than that of myosin (∼850 amino acids) and dynein (1,000 amino acids), and is the smallest known molecular motor. Here, we report the crystal structure of the human kinesin motor domain with bound ADP determined to 1.8-Å resolution by X-ray crystallography. The motor consists primarily of a single α/β arrowhead-shaped domain with dimensions of 70×45×45 Å. Unexpectedly, it has a striking structural similarity to the core of the catalytic domain of the actin-based motor myosin. Although kinesin and myosin have virtually no amino-acid sequence identity, and exhibit distinct enzymatic4–6 and motile7–10 properties, our results suggest that these two classes of mechanochemical enzymes evolved from a common ancestor and share a similar force-generating strategy.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Tubulin Cytoskeleton in Neurodegenerative Diseases–not Only Primary Tubulinopathies
Cellular and Molecular Neurobiology Open Access 09 November 2022
-
Anchoring geometry is a significant factor in determining the direction of kinesin-14 motility on microtubules
Scientific Reports Open Access 14 September 2022
-
Active biological mechanisms: transforming energy into motion in molecular motors
Synthese Open Access 10 August 2021
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Bloom, G. & Endow, S. Motor Proteins 1: Kinesin (Academic, London, 1994).
Goldstein, L. S. A. Rev. Genet. 27, 319–351 (1993).
Yang, J. T., Saxton, W. M., Stewart, R. J., Raff, E. C. & Goldstein, L. S. Science 249, 42–47 (1990).
Hackney, D. D. Proc. natn. Acad. Sci. U.S.A. 85, 6314–6318 (1988).
Gilbert, S. P., Webb, M. R., Brune, M. & Johnson, K. A. Nature 373, 671–676 (1995).
Ma, Y. Z. & Taylor, E. W. Biochemistry 34, 13233–13241 (1995).
Howard, J., Hudspeth, A. J. & Vale, R. D. Nature 342, 154–158 (1989).
Block, S. M., Goldstein, L. S. & Schnapp, B. J. Nature 348, 348–352 (1990).
Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. Naqture 365, 721–727 (1993).
Coppin, C. M., Finer, J. T., Spudich, J. A. & Vale, R. D. Proc. natn. Acad. Sci. U.S.A. (in the press).
Story, R. M. & Steitz, T. A. Nature 355, 374–376 (1992).
Holm, L. & Sander, C. J. molec. Biol. 233, 123–138 (1993).
Bagshaw, C. R. & Trentham, D. R. Biochem. J. 141, 331–349 (1974).
Grammar, J. C., Kuwayama, H. & Yount, R. G. Biochemistry 32, 5752–5732 (1993).
Fisher, A. J. et al. Biochemistry 34, 8960–8972 (1995).
Taylor, E. W. in The Heart and Cardiovascular System (ed. Fozzard, H. A.) 1281–1293 (Raven, New York, 1992).
Yount, R. G., Cremo, C. R., Grammar, J. C. & Kerwin, B. A. Phil. Trans. R. Soc. Lend. B 336, 55–61 (1992).
Sablin, E. P., Kull, F. J., Cooke, R., Vale, R. D. & Fletterick, R. J. Nature 380, 555–559 (1996).
Whittaker, M. et al. Nature 378, 748–751 (1996).
Jontes, J. D., Wilson-Kubalek, E. M. & Milligan, R. A. Nature 378, 751–753 (1995).
Peskin, C. S. & Oster, G. Biophys. J. 68, 202s–211s (1995).
Vale, R. D. et al. Nature 380, 451–453 (1996).
Berliner, E., Young, E. C., Anderson, K., Mahtani, H. K. & Gelles, J. Nature 373, 718–721 (1995).
Spudich, J. A. Nature 372, 515–518 (1994).
Navone, F. et al. J. Cell Biol. 117, 1263–1275 (1992).
Fujiwara, S., Kull, F. J., Sablin, E. P., Stone, D. B. & Mendelson, R. A. Biophys. J. 69, 1563–1568 (1995).
Naber, N., Matuska, M., Sablin, E. P., Pate, E. & Cooke, R. Protein Sci. 4, 1824–1831 (1995).
McRee, D. E. Practical Protein Crystallography (Academic, San Deigo, 1993).
Collaborative Computing Project No. 4 Acta crystallogr. D50, 760–763 (1994).
Brunger, A. T. X-PLOR Version 3.1. A system forX-ray Crystallography and NMR (Yale Univ. Press, New Haven, CT, 1992).
Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. J. appl. Crystallogr. 26, 283–291 (1993).
Kraulis, P. J. J. appl. Crystallogr. 24, 946–950 (1991).
Rayment, I. et al. Science 261, 58–65 (1993).
Wells, J. A. & Yount, R. G. Proc. natn. Acad. Sci. U.S.A. 76, 4966–4970 (1979).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Jon Kull, F., Sablin, E., Lau, R. et al. Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature 380, 550–555 (1996). https://doi.org/10.1038/380550a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/380550a0
This article is cited by
-
Armadillo repeat-containing kinesin represents the versatile plus-end-directed transporter in Physcomitrella
Nature Plants (2023)
-
Anchoring geometry is a significant factor in determining the direction of kinesin-14 motility on microtubules
Scientific Reports (2022)
-
Tubulin Cytoskeleton in Neurodegenerative Diseases–not Only Primary Tubulinopathies
Cellular and Molecular Neurobiology (2022)
-
Active biological mechanisms: transforming energy into motion in molecular motors
Synthese (2021)
-
Number Dependence of Microtubule Collective Transport by Kinesin and Dynein
Journal of the Indian Institute of Science (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.