Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genetic selection of peptide aptamers that recognize and inhibit cyclin-dependent kinase 2

Abstract

A NETWORK of interacting proteins controls the activity of cyclin-dependent kinase 2 (Cdk2) (refs 1, 2) and governs the entry of higher eukaryotic cells into S phase. Analysis of this and other genetic regulatory networks would be facilitated by intracellular reagents that recognize specific targets and inhibit specific network connections. We report here the expression of a combinatorial library of constrained 20-residue peptides displayed by the active-site loop of Escherichia coli thioredoxin, and the use of a two-hybrid system to select those that bind human Cdk2. These peptide aptamers were designed to mimic the recognition function of the complementarity-determining regions of immuno-globulins. The aptamers recognized different epitopes on the Cdk2 surface with equilibrium dissociation constant in the nanomolar range; those tested inhibited Cdk2 activity. Our results show that peptide aptamers bear some analogies with monoclonal antibodies, with the advantages that they are isolated together with their coding genes, that their small size should allow their structures to be solved, and that they are designated to function inside cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sherr, C. J. Cell 79, 551–555 (1994).

    Article  CAS  Google Scholar 

  2. Morgan, D. O. Nature 374, 121–134 (1995).

    Article  ADS  Google Scholar 

  3. LaVallie, E. E. et al. Biotechnology 11, 187–193 (1993).

    CAS  PubMed  Google Scholar 

  4. Lu, Z. & Murray, K. S. Biotechnology 13, 366–372 (1995).

    CAS  PubMed  Google Scholar 

  5. Gyuris, J., Golemis, E., Chertkov, H. & Brent, R. Cell 75, 791–803 (1993).

    Article  CAS  Google Scholar 

  6. Finley, R. L. Jr. & Brent, R. Proc. natn. Acad. Sci. U.S.A. 91, 12980–12984 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Estojak, J., Brent, R. & Golemis, E. A. Molec. cell. Biol. 15, 5820–5829 (1995).

    Article  CAS  Google Scholar 

  8. O'Shannessy, D. J., Brigham-Burke, M., Soneson, K. K., Hensley, P. & Brooks, I. Analyt. Biochem. 212, 457–468 (1993).

    Article  CAS  Google Scholar 

  9. Kato, J., Matsushime, H., Hiebert, S. H., Ewen, M. E. & Sherr, C. J. Genes Dev. 7, 331–342 (1993).

    Article  CAS  Google Scholar 

  10. Reymond, A. & Brent, R. Oncogene 11, 1173–1178 (1995).

    CAS  PubMed  Google Scholar 

  11. Devlin, J. J., Panganiban, L. C. & Devlin, P. E. Science 249, 404–406 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Cwirla, S. E., Peters, E. A., Barrett, R. W. & Dower, W. J. Proc. natn. Acad. Sci. U.S.A. 87, 6378–6382 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Lam, K. S. et al. Nature 354 82–84 (1991).

    Article  ADS  CAS  Google Scholar 

  14. Songyang, Z. et al. Curr. Biol. 4, 973–982 (1994).

    Article  CAS  Google Scholar 

  15. Scott, J. K. & Craig, L. Curr. Biology 5, 40–48 (1994).

    CAS  Google Scholar 

  16. Yang, M., Wu, Z. & Fields, S. Nucleic Acids Res. 23, 1152–1156 (1995).

    Article  CAS  Google Scholar 

  17. McConnell, S. J., Kendall, M. L., Reilly, T. M. & Hoess, R. H. Gene 151, 115–118 (1994).

    Article  CAS  Google Scholar 

  18. Spolar, R. S. & Record, M. T. Jr Science 263, 777–784 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Oldenburg, K. R., Loganathan, D., Goldstein, I. J., Schultz, P. G. & Gallop, M. A. Proc. natn. Acad. Sci. U.S.A. 89, 5393–5397 (1992).

    Article  ADS  CAS  Google Scholar 

  20. McLafferty, M. A., Kent, K. A., Ladner, R. C. & Markland, W. Gene 128, 29–36 (1993).

    Article  CAS  Google Scholar 

  21. Ruden, D. M., Ma, J., Li, Y., Wood, K. & Ptashne, M. Nature 350, 250–252 (1991).

    Article  ADS  CAS  Google Scholar 

  22. Gietz, D., St Jean, A., Woods, R. A. & Schiestl, R. H. Nucleic Acids Res. 20, 1425 (1992).

    Article  CAS  Google Scholar 

  23. Golemis, E. & Brent, R. Molec. cell. Biol. 12, 3006–3014 (1992).

    Article  CAS  Google Scholar 

  24. Lee, J. W., Ryan, F., Swaffield, J. C., Johnston, S. A. & Moore, D. D. Nature 374, 91–94 (1995).

    Article  ADS  CAS  Google Scholar 

  25. Ausubel, F. M. et al. Current Protocols in Molecular Biology (Greene and Wiley-lnterscience, New York, 1987–1994).

    Google Scholar 

  26. Desai, D., Gu, Y. & Morgan, D. O. Molec. Biol. Cell 3, 571–582 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colas, P., Cohen, B., Jessen, T. et al. Genetic selection of peptide aptamers that recognize and inhibit cyclin-dependent kinase 2. Nature 380, 548–550 (1996). https://doi.org/10.1038/380548a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/380548a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing