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five Met were substituted with Se-Met as determined by mass spectrometry.
Crystallization. Crystals of p58-cl42 were grown from 0.55 M (NH4)2HPO4,
50 mM sodium citrate, pH 5.4, final pH 7.7. Hexagonal rods
(0:1 3 0:1 3 1:5 mm3; space group P61; a ¼ b ¼ 92:4 Å, c ¼ 46:8 Å; 1
molecule per asymmetric unit) grow two weeks after seeding. Se-met p58
crystallized under the same condition using the native crystals as seeds; the
difference in cell dimensions was less than 0.5%. After the crystals were
stabilized for at least 10 h in a harvesting solution (1.5 M (NH4)2HPO4,
50 mM sodium citrate, pH 5.4, final pH 7.7), they were soaked for 2–5 min
in a cryo-protecting solution (1.5 M (NH4)2HPO4, 50 mM Na citrate, pH 5.4,
25% glycerol, final pH 7.7), and flash-cooled with liquid nitrogen.
Data collection. Multiwavelength anomalous dispersion (MAD)26 data were
collected to 2.2 Å with a 300-mm diameter MAR Research image-plate system
at the X25 beamline of the National Synchrotron Light Source, Brookhaven
National Laboratory. A high-resolution native data set was collected to 1.7 Å on
the Princeton 2K CCD detector at F-1 beamline of the Cornell High Energy
Synchrotron Source (CHESS). Data were processed (Table 1) using DENZO
and SCALEPACK (HKL Research). Most of the subsequent processing used the
CCP4 programs19.
MAD phasing. MAD phasing was treated as a case of multiple isomorphous
replacement27. Four selenium sites were identified from anomalous and
dispersive difference Pattersons and were checked by difference Fouriers. The
N-terminal methionine was disordered. Refinement of anomalous scatterer
parameters and phase calculation were performed with MLPHARE28. Because
of discrepancies between phasing statistics generated by MLPHARE and other
programs27, electron-density maps before and after model refinement are
displayed instead of experimental phasing statistics (Fig. 4). The initial MAD
map was improved by density modification using DM19, assuming 40% solvent
content. The correct space-group enantiomer P61 was identified by the
presence of clear solvent boundary in the 2.2-Å electron-density maps.
Model refinement. The experimental MAD phases were used with the native
data set to calculate the electron density for the native structure. Both density-
modified and unmodified electron-density maps were used to build an 85%
complete model with O (DATAONO AB). For refinement, data with Fobs . 0j
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�

were included. The model was initially refined at 10–2.2 Å using positional
refinement and simulated annealing protocols in X-PLOR29. Several cycles of
manual refitting and subsequent inclusion of lower-resolution data to 16 Å
combined with bulk solvent correction allowed the missing loop regions to be
traced. The resolution was then extended in one step to 1.7 Å. Refinement at
this stage involved simulated annealing followed by B-factor refinement, with
the extensive use of simulated annealing omit maps (Fig. 4b). The final model
refined in X-PLOR contained residues 6–200 and 211 water molecules. This
model was refined with REFMAC19 (Table 1). The maximum-likelihood
method in REFMAC lowered the R-values in the highest resolution shell
(from 38.4 to 33.7% for Rfree at 1.76–1.7 Å). All f and w angles lie in the
allowed regions of the Ramachandran plot, with 92% in the most favourable
regions. Side-chain densities are well defined for all residues except 151–153 in
a loop, which have B-factors .70 Å2.
Figure preparation. Figures 1a, 2 and 3 were prepared using the program
RIBBONS30.
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The sequence of neurotactin reported in this Letter is identical to
that of fractalkine, a CX3C membrane-bound chemokine reported
in a Letter by J. F. Bazan et al. in Nature 385, 640–644 (1997),
published while the paper by Pan et al. was under consideration. A
note to this effect in the paper by Pan et al. was inadvertently
omitted by Nature. M


	Neurotactin, a membrane-anchored chemokine upregulated in brain inflammation

