Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A histone octamer-like structure within TFIID

Abstract

THE general transcription factor TFIID nucleates initiation complex formation through direct core promoter binding1,2, commits promoters within chromatin to transcription3, and mediates the action of transcriptional activators, a phenomenon that may correlate with enhanced TFIID recruitment4–7 or conformational changes in TFIID-promoter complexes8,9. Molecular studies of the multiprotein TFIID complex have identified a primary TATA binding subunit (TBP)2, TBP-associated factors (TAFs) that interact with and mediate the function of activators2,7,10,11 and intersubunit interactions2 but have yielded relatively little insight into the structural organization of the complex or the actual mechanism of transcriptional activation. Here we present biochemical evidence for the structural relevance of histone homo-logies in the human TFIID subunits hTAFSO, hTAF31 and hTAF20/15. Together with analyses of native TFIID complexes and accompanying crystallographic studies12, the results suggest that there is a histone octamer-like TAF complex within TFIID.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Roeder, R. G. Trends biochem, Sci. 16, 402–408 (1991).

    Article  CAS  Google Scholar 

  2. Burley, S. K. & Roeder, R. G. A. Rev. Biochem. (in the press).

  3. Owen-Hughes, T. & Workman, J. L. Crit. Rev. euk. Gene Express. 4, 403–441 (1994).

    CAS  Google Scholar 

  4. Abmayr, S. M. Workman, J. L. & Roeder, R. G. Genes Dev. 2, 542–553 (1998).

    Article  Google Scholar 

  5. Workman, J. L., Abmayr, S. M., Cromlish, W. A. & Roeder, R. G. Cell 55, 211–219 (1988).

    Article  CAS  Google Scholar 

  6. Lieberman, P. M. & Berk, A. J. Genes Dev. 8, 995–1006 (1994).

    Article  CAS  Google Scholar 

  7. Sauer, F., Hansen, S. K. & Tjian, R. Science 270, 1783–1788 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Horikoshi, M., Hai, T., Lin, Y.-S., Green, M. R. & Roeder, R. G. Cell 54, 1033–1042 (1988).

    Article  CAS  Google Scholar 

  9. Horikoshi, M., Carey, M. F., Kakidani, H. & Roeder, R. G. Cell 54, 665–669 (1988).

    Article  CAS  Google Scholar 

  10. Chen, J.-L., Attardi, L. D., Verrijzer, C. P., Yokomori, K. & Tjian, R. Cell 79, 93–105 (1994).

    Article  CAS  Google Scholar 

  11. Jacq, X. et al. Cell 79, 107–117 (1994).

    Article  CAS  Google Scholar 

  12. Xie, X. et al. Nature 380, 316–322 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Mengus, G. et al. EMBO J. 14, 1520–1531 (1995).

    Article  CAS  Google Scholar 

  14. Yokomori, K., Chen, J.-L., Admon, A., Zhou, S. & Tjian, R. Genes Dev. 7, 2587–2597 (1993).

    Article  CAS  Google Scholar 

  15. Kokubo, T. et al. Nature 367, 484–487 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Hisatake, K. et al. Proc. natn. Acad. Sci. U.S.A. 92, 8195–8199 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Baxevanis, A. D., Arents, G., Moudrianakis, E. N. & Landsman, D. Nucleic Acids Res. 23, 2685–2691 (1995).

    Article  CAS  Google Scholar 

  18. Arents, G., Burlingame, R. W., Wang, B.-C., Love, W. E. & Moudrianakis, E. N. Proc. natn. Acad. Sci. U.S.A. 88, 10148–10152 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Pruss, D., Hayes, J. J. & Wolffe, A. P. BioEssays 17, 1–10 (1995).

    Article  Google Scholar 

  20. Chiang, C.-M., Ge, H., Wang, Z., Hoffmann, A. & Roeder, R. G. EMBO J. 12, 2749–2762 (1993).

    Article  CAS  Google Scholar 

  21. Thut, C. J., Chen, J.-L., Klemm, R. & Tjian, R. Science 267, 100–104 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Chiang, C.-M. & Roeder, R. G. Science 267, 531–536 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Arents, G. & Moudrianakis, E. N. Proc. natn. Acad. Sci. U.S.A. 90, 10489–10493 (1993).

    Article  ADS  CAS  Google Scholar 

  24. Sawadogo, M. & Roeder, R. G. Cell 43, 165–175 (1985).

    Article  CAS  Google Scholar 

  25. Nakajima, N., Horikoshi, M. & Roeder, R. G. Molec. cell. Biol. 8, 4028–4040 (1988).

    Article  CAS  Google Scholar 

  26. Gilmour, D. S., Dietz, T. J. & Elgin, S. C. R. Molec. cell. Biol. 10, 4233–4238 (1990).

    Article  CAS  Google Scholar 

  27. Nakatani, Y. et al. Nature 348, 86–88 (1990).

    Article  ADS  CAS  Google Scholar 

  28. Martinez, E. et al. Proc. natn. Acad. Sci. U.S.A. 92, 11864–11868 (1995).

    Article  ADS  CAS  Google Scholar 

  29. Poon, D. et al. Proc. natn. Acad. Sci. U.S.A. 92, 8224–8228 (1995).

    Article  ADS  CAS  Google Scholar 

  30. Zhong, R., Roeder, R. G. & Heintz, N. Nucleic Acids Res. 11, 7409–7425 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmann, A., Chiang, CM., Oelgeschläger, T. et al. A histone octamer-like structure within TFIID. Nature 380, 356–359 (1996). https://doi.org/10.1038/380356a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/380356a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing