Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Non-mutualistic yucca moths and their evolutionary consequences


INTERSPECIFIC mutualisms are regarded as having evolved from antagonistic or commensalistic interactions, with most mutualisms remaining facultative but some having coevolved into obligate reciprocal dependency1–4. Underlying mutualism is an intrinsic conflict between the parties, in that each is under selection for increased exploitation of the other3–7. Theoretical models suggest that this conflict is a source of evolutionary instability, and that evolution of 'cheating' by one party may lead to reciprocal extinction4,6,7. Here we present phylogenetic evidence for reversal of an obligate mutualism: within the yucca moth complex, distinct cheater species derived from obligate pollinators inflict a heavy cost on their yucca hosts by laying their eggs but not pollinating the yucca. Phylogenetic data show the cheaters to have existed for a long time. Coexisting pollinators and cheaters are not sister taxa, supporting predictions that evolution of cheating within a single pollinator is evolutionary unstable. Several lines of evidence support a hypothesis that host shifts preceded the reversal of obligate mutualism. Host or partner shifts is a mechanism that can provide a route of evolutionary escape among obligate mutualists in general.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. Thompson, J. N. The Revolutionary Process (University of Chicago Press, 1994).

    Book  Google Scholar 

  2. Gargas, A., dePriest, P. T., Grube, M. & Tehler, A. Science 268, 1492–1495 (1995).

    ADS  CAS  Article  Google Scholar 

  3. Axelrod, R. & Hamilton, W. D. Science 242, 1385–1390 (1981).

    ADS  Article  Google Scholar 

  4. Bull, J. J. & Rice, W. R. J. theor. Biol. 149, 63–74 (1991).

    CAS  Article  Google Scholar 

  5. Pellmyr, O. & Huth, C. J. Nature 372, 257–260 (1994).

    ADS  CAS  Article  Google Scholar 

  6. Trivers, R. L. Q. Rev. Biol. 46, 35–57 (1971).

    Article  Google Scholar 

  7. Soberon Mainero, J. & Martinez del Rio, C. in The Biology of Mutualism (ed. Boucher, D. H.) 192–216 (Oxford Univ. Press, New York, 1985).

    Google Scholar 

  8. Riley, C. V. Am. Mo. bot. Gdn 3, 99–158 (1892).

    Google Scholar 

  9. Powell, J. A. Trends Ecol. Evol. 7, 10–14 (1992).

    CAS  Article  Google Scholar 

  10. Richter, K. S. & Weis, A. E. Nature 376, 557–558 (1995).

    ADS  CAS  Article  Google Scholar 

  11. Keeley, J. E., Keeley, S. C. & Ikeda, D. A. Am. Midl. Nat. 115, 1–9 (1986).

    Article  Google Scholar 

  12. Pellmyr, O. & Thompson, J. N. Proc. natn. Acad. Sci. U.S.A. 89, 2927–2929 (1992).

    ADS  CAS  Article  Google Scholar 

  13. Davis, D. R. U.S. natn. Mus. Bull. 255, 1–170 (1967).

    Article  Google Scholar 

  14. Miles, N. J. J. Lepid. Soc. 37, 207–216 (1983).

    Google Scholar 

  15. Tyre, A. J. & Addicott, J. F. Oecologia 94, 173–175 (1993).

    ADS  CAS  Article  Google Scholar 

  16. Riley, C. V. Proc. Am. Ass. Advmt Sci. 29, 617–639 (1881).

    Google Scholar 

  17. Feist, M. A. thesis, Univ. Cincinnati (1995).

  18. Felsenstein, J. Phylogenetic Inference Package (PHYLIP) version 3.5c (University of Washington, 1993).

    Google Scholar 

  19. Kimura, M. J. molec. Evol. 16, 111–120 (1980).

    ADS  CAS  Article  Google Scholar 

  20. Wright, S. The Theory of Gene Frequencies Vol. 2 (Univ. of Chicago Press, 1969).

    Google Scholar 

  21. Dawkins, R. The Selfish Gene, 2nd edn (Oxford Univ. Press, 1989).

    Google Scholar 

  22. Vickery, W. L., Giraldeau, L.-C., Templeton, J. J., Kramer, D. L. & Chapman, C. A. Am. Nat. 137, 847–863 (1991).

    Article  Google Scholar 

  23. Yamauchi, A. Am. Nat. 145, 434–456 (1995).

    Article  Google Scholar 

  24. Galil, J. & Eisikowitch, D. Tijdschr. Ent. 112, 1–13 (1969).

    Google Scholar 

  25. Wiebes, J. T. Proc. K. ned. Akad. Wet. 97, 491–495 (1994).

    Google Scholar 

  26. Kishino, H. & Hasegawa, M. J. molec. Evol. 29, 170–179 (1989).

    ADS  CAS  Article  Google Scholar 

  27. Brown, J. L., Pellmyr, O., Thompson, J. N. & Harrison, R. G. Ann. ent. Soc. Am. 87, 795–802.

  28. McKelvey, S. D. Yuccas of the Southwestern United States (Arnold Arboretum, Jamaica Plain, MA, 1938, 1947).

    Google Scholar 

  29. Swofford, D. L. Phylogenetic Analysis Using Parsimony, version 3.1 (Illinois Natural History Survey, Champaign, Urbana, IL, 1993).

    Google Scholar 

  30. Clary, D. O. & Wolstenholme, D. R. J. molec. Evol. 22, 252–571 (1985).

    ADS  CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pellmyr, O., Leebens-Mack, J. & Huth, C. Non-mutualistic yucca moths and their evolutionary consequences. Nature 380, 155–156 (1996).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing