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DNA methylation is one of several epigenetic changes observed in cells. Aberrant methylation of tumor
suppressor genes, proto-oncogenes, and vital cell cycle genes has led many scientists to investigate the
underlying cellular mechanisms of DNA methylation under normal and pathological conditions. Although DNA
methylation is necessary for normal mammalian embryogenesis, both hypo- and hypermethylation of DNA are
frequently observed in carcinogenesis and other pathological disorders. DNA hypermethylation silences the
transcription of many tumor suppressor genes, resulting in immortalization of tumor cells. The reverse process,
demethylation and restoration of normal functional expression of genes, is augmented by DNA methylation
inhibitors. Recent studies suggest that DNA hypomethylation may also control gene expression and
chromosomal stability. However, the roles of and relationship between hypomethylation and hypermethylation
are not well understood. This review provides a brief overview of the mechanism of DNA methylation, its
relationship to extrinsic stimulation including dietary intake and aging, and of abnormally methylated DNA in
breast and colorectal cancers, which could be used as prognostic and diagnostic markers.
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During translation and transcription, DNA exerts its
effects in cells through regulatory mechanisms
including mRNA stabilization, transcription, and
epigenetic changes.1 The pattern of altered gene
expression or epigenetic change is of major impor-
tance in common malignancies.2,3 Methylation of
the DNA, histone deacetylation, ubiquitination,
and phosphorylation are examples of epigenetic
change.4 DNA methylation, unlike the other epi-
genetic changes, does not alter the nucleotide
sequence.

Most cytosine-phosphoguanine (CpG) dinucleo-
tides are unevenly distributed throughout the
genome and remain in short stretches or clusters
(500–2000 bp), called CpG islands.5–7 These islands
are located in the promoter region and are found in
half of all human genes.8 In mammals, DNA
methylation occurs after replication, when a methyl
group (CH3) is added to the 50 position of cytidyl
residues in the dinucleotide sequence CpG9,10

(Figure 1). Endonucleases, which normally degrade
foreign DNA, regulate gene expression by silencing
genes when the CpG is methylated.11 CpG islands
remain unmethylated in housekeeping genes and
methylated or silenced in other genes.12

DNA is methylated by DNA methyltransferases
(DNMTs), which transfer the methyl group from S-
adenosylmethionine (SAM) to generate patterns of
genomic methylation that silence genes13–15 (Figure
1). The DNMTs known to date are DNMT1, DNMT2,
DNMT3a, DNMT3b, and DNMT3L.15,16 All methyl-
transferases have homology and different functions.
DNMT1 maintains established methylation patterns
in hemi-methylated genes by copying methylation
patterns from the parent strand to the daughter and
is expressed during the S-phase.17 DNMT2, a small
protein of 391 amino acids, is known to have weak
DNA methyltransferase activity.18 DNMT3a and
DNTM3b, referred to as de novo methyltransferases,
methylate unmethylated DNA. They initiate normal
DNA methylation during embryonic development.19

DNMT3L does not bind to SAM, but increases the
binding of DNMT3a to SAM. Since DNMT3L-
deficient mice are sterile, DNMT3L is likely to be
essential in the methylation process.19

Overexpression of DNMTs can be lethal in
animals as well as in human cancers.20 DNMTs are
involved in the downregulation of tumor suppressor
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genes and stimulation of proto-oncogenes.21,22

Although DNMTs are important in DNA methyla-
tion, several findings indicate that DNMTs are not
essential for the promotion of carcinogenesis.23–25

Hypo- and hypermethylation

When gene expression is altered due to DNA
methylation, it is usually categorized as due to
hypo-methylation or hypermethylation (Figure 2).
DNA hypomethylation is associated with gene
reactivation and chromosomal instabilities.26,27

Functional outcomes of hypomethylation include
the upregulation or overexpression of transcription
of proto-oncogenes, increased recombination and
mutation, X-chromosome inactivation, loss of im-
printing, reactivation of transposable elements, and
demethylation of xenobiotics10,28,29 (Figure 3). Acti-
vation of proto-oncogenes, reactivation of transpo-
sable elements, and loss of imprinting of genes are
the results of hypomethylation and all promote
cancer.30

When CpG islands are hypermethylated, the
activity of the regulatory proteins that promote
transcription is restricted due to the tightly packed
nucleosomes.8 DNA hypermethylation is involved

in gene repression and chromosomal instabilities.31

Results of hypermethylation include suppression of
tumor suppressor genes, chromatin condensation,
and suppression of DNA repair genes (Figure 4).
Tumor suppressor genes contain unmethylated CpG
islands in their promoter regions and are methylated
in various malignancies.32–34 Both types of methyla-
tion occur simultaneously in various sporadic
cancers and affect the function of human tumor
suppressor genes and proto-oncogenes.35

Detection of DNA methylation

Currently, several methods are used to detect
methylated DNA (Table 1).

Methylated DNA can be detected by converting
unmethylated cytosine residues to uracil using
sodium bisulfite modification, followed by poly-
merase chain reaction (PCR) to identify the un-
methylated nucleotides.36 Methylation-specific PCR
(MSP) detects the methylation of CpG islands, but
with higher specificity and sensitivity.37 Quantita-
tive real-time PCR (MethyLight or QM-MSP) is used
to detect low levels of methylation that cannot be
distinguished using MSP.38,39

Figure 1 DNA methylation. SAM and other methyl donors bind
to DNMTs to methylate the DNA that is tightly wrapped around
the histones.

Figure 2 Two types of aberrant methylation, which elucidate
certain actions.

Figure 3 Known functional outcomes of DNA hypomethylation.

Figure 4 Known functional outcomes of DNA hypermethylation.
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A modification of MSP, termed McrBC-methyla-
tion-sensitive-arbitrarily-primed-polymerase-chain-
reaction (McrBC-msAP-PCR) requires methylation-
specific GTP-dependent restriction endonuclease,
McrBC, to detect differentially methylated sites
within DNA, where hypermethylation and hypo-
methylation is observed by DNA fingerprint band
intensity.40 The procedure for the methylated CpG
island recovery assay (MIRA) requires isolated and
sonicated genomic DNA, instead of sodium bisul-
fite.41 PCR reactions detect CpG island methylation
after the DNA is incubated with a matrix containing
methyl-CpG binding domain protein-2b (MBD2b)
and methyl-CpG binding domain protein 3-like-1,
which bind specifically to methylated DNA se-
quences.41,42 MIRA can be used to study the
methylation status of a wide array of genes in
cancers, such as the lung.42 Currently, other array-
based methods are being developed to screen the
methylation pattern of several genes.39

Differential methylation hybridization (DMH) is
an oligonucleotide array-based method, which de-
termines the extent of methylation of CpG islands by
comparison with a reference sample.44 Methylation-
specific restriction enzymes (MseI) are used to
obtain intact CpG islands. The CpG islands are
fluorescently labeled and after subsequent PCR, they
are hybridized to arrayed oligonucleotides that can
discriminate between methylated and unmethylated
alleles in regions of interest. Microarray methylation
assessment of single samples (MMASS) has been
shown to be more sensitive and is an optimized
method for detecting the methylated and unmethy-
lated sequences within the entire genome.45

MMASS uses the methylation-specific enzyme,
McrBC, instead of MseI. It is able to detect
unmethylated sequences more effectively than
DMH because McrBC only cleaves methylated
sequences and does not require a reference sample.45

Methylation target array (MTA) simultaneously
determines whether or not genes and CpG islands

in multiple tumors are hypermethylated and can be
correlated to clinicopathological features of the
patient.46 An advantage of MTA is that a single
nylon filter can be used repeatedly to probe for
various genes which are indicative of DNA methyla-
tion.47

DNA methylation and cancer: overview

Aberrant DNA methylation is one of the many
potential causes for the abnormal growth of cancer
cells, but it is also known to protect against
intestinal cancer.4 Different types of cancers are
associated with methylation of tumor suppressor
genes and proto-oncogenes, causing alterations in
functional gene expression. Cancer-specific DNA
methylation patterns have been detected in free-
floating DNA released from dead cancer cells.5,48 A
decrease in the expression of tumor suppressor
genes correlates with an increase in methylation of
DNA in the promoter region.49,50 Aberrant methyla-
tion of tumor suppressor genes in many cancers,
resulting in the downregulation of transcriptional
activation, has been reported.

In some cancers, both hypermethylation and
hypomethylation are observed. Hypomethylation
increases progressively with increasing malignancy
grade in breast, ovarian, cervical, and brain can-
cers.51 Breast and colorectal cancers are malignan-
cies commonly caused by regional hypermutability
or global hypomethylation.

DNA methylation and breast cancer

Many factors contribute to the pathogenesis of breast
cancer, which is one of the most common malig-
nancies among females. These factors include
family history, nutrition, age, and epigenetic
changes including DNA methylation. Methylation
appears to be an early event in the etiology of breast

Table 1 Methods of detection for methylated DNA sequences

Method Acronym Function Reference

Methylation-specific PCR MSP Non-quantitative; quick way to determine if gene is
methylated after sodium bisulfite modification

36,37

Quantitative multiplex
methylation-specific PCR

QM-MSP or
MethyLight

Quantitatively detects methylated alleles and can
differentiate between monoallelic and biallelic sequences

38,39

McrBC-methylation-sensitive-
arbitrarily-primed PCR

McrBC-msAP-PCR Detects band intensity of methylated sites using enzyme
McrBC

40

Methylated CpG island
recovery assay

MIRA Array based; uses genomic DNA to detect methylated sites 41,42

Combined bisulfite restriction
analysis

COBRA Combines PCR and restriction enyzme analysis to detect
methylated sites

43

Differential methylation
hybridization

DMH Array based; can analyze450000 genomic fragments for
methylation at once

44

Microarray methylation
assessment of a single mass

MMASS Array based; compares genome-wide methylated to
unmethylated sequences in a single sample

45

Methylation target array MTA Array based; detects hypermethylation of multiple loci in a
variety of tumors

46
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carcinogenesis, resulting in the activation of many
oncogenes and silencing of tumor suppressors to
promote proliferation of abnormal cells.52,53 It is
debatable, however, whether global hypomethyla-
tion or regional hypermethylation occurs first dur-
ing the development of breast cancer, since the
phenomena are independent processes. It is not
known whether or not it is possible to inhibit
carcinogenesis by inhibiting one of these processes
and not the others. Numerous studies have revealed
various genes, which are either hypo- or hyper-
methylated in breast cancer (Table 2).

Metastatic breast cancer requires the expression of
multiple genes. Regional hypermethylation and

global hypomethylation are involved in different
stages of breast cancer.76 Global hypomethylation
could be a mechanism for late stages of breast cancer
while local hypermethylation is plausible for early
stages of breast cancer.22,30 DNA methylation results
in altered gene products including cell cycle
regulators, steroid receptors, and cell adhesion
molecules, which give rise to increased suscept-
ibility to tumor development and decreased detox-
ification of carcinogens.58 Alterations in the breast
cancer susceptibility gene product (BRCA) accounts
for half of the inherited breast carcinomas.77 Its
methylation is observed in breast and ovarian
cancers, but not in colon and liver cancers, or

Table 2 Genes methylated in breast cancer

Gene Description Hypo/hyper Reference

1-SYNU-CLEIN Human breast cancer-specific gene 1 Hypo 54

c-myc C-myelocytic leukemia Hypo 55

MAGE Melanoma-associated antigen Hypo 56

NOEY2/ARHI Ras homolog member 1 Hypo 52

Sat2 Satellite 2 Hypo 57

SATR1/SATR2 Satellite repeat 1/satellite repeat 2 Hypo 57

UPA Urokinase plasminogen activator Hypo 54

14-3-3sigma 14-3-3 sigma Hyper 58

AK5 Adenylate kinase 5 Hyper 59

AMN Amnionless homolog Hyper 59

APC Adenomatous polyposis coli Hyper 54

BRCA1 Breast cancer Hyper 60

CDH1 Cadherin 1 Hyper 61

CDKN2A Cyclin-dependent kinase inhibitor 2A Hyper 17

DAPK1 Death-associated protein kinase 1 Hyper 54

DCC Deleted in colorectal carcinoma Hyper 59

DSC3 Desmocollin 3 Hyper 62

ER Estrogen receptor Hyper 8

FOXA2 Forkhead box A2 Hyper 59

GJB2 Gap junction protein, beta 2 (Connexin 26) Hyper 59

GSTP1 Glutathione S-transferase pi Hyper 32

HIC-1 Hypermethylated in cancer 1 Hyper 54

HIN-1 Hairpin induced 1 Hyper 63

HME-1 Human epithelial cell marker 1 Hyper 64

HOXD11 Home box D11 Hyper 59

KLK6 Kallikrein 6 Hyper 65

KLK10/NES1 Kallikrein 10 Hyper 66

LATS1/LATS2 Large tumor suppressor 1 and 2 Hyper 67

LKB1/STK11 Serine/threonin protein kinase 11 Hyper 68

MGMT Methylguanine methyltransferase Hyper 69

NORE1 Novel Ras effector 1 Hyper 70

p14ARF p14 alternate reading frame Hyper 71

P16INK4a p16 INK 4a Hyper 71

p57KIP2 Cyclin-dependent kinase inhibitor 1C Hyper 72

PCDH10 Protocadherin 10 Hyper 59

PR Progesterone receptor Hyper 54

Rad9 Rad9 homolog Hyper 73

RASSF1A Ras-association domain family protein 1A Hyper 54

RUNX3 Human Runt-related transcription factor gene 3 Hyper 74

SIM1 Single-Minded homolog 1 Hyper 59

TDH L-threonine dehydrogenase Hyper 59

TIMP-3 Tissue inhibitor of metalloproteinases-3 Hyper 54

TMS1 Target of methylation-induced silencing 1 Hyper 75

Tropomyosin Tropomyosin Hyper 59

TSPAN-2 Tetraspan 2 Hyper 59

Twist Twist Hyper 63

WT-1 Wilms tumor 1 Hyper 54

XT3 X transporter protein 3 Hyper 59
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leukemia indicating a tissue-specific process.58 The
frequency of methylation of this gene product is
38.5% in sporadic breast cancer.60 Patients with a
HER2/Neu-positive tumor indicate a highly aggres-
sive breast cancer that requires special treatment,
since it is amplified in 30% of invasive breast
carcinomas.55 DNA methylation is prevalent in the
highly aggressive HER2/Neu-positive breast cancers;
this gene is amplified in 30% of the cancers.55

Increased aberrant methylation of steroid receptor
genes and glycoproteins, such as progesterone
receptor (PR) and E-cadherin, respectively, are
associated with Her2/Neu-positive cancers. Hyper-
methylation of the GC-rich region and loss of
expression in about 80% of invasive lobular carci-
nomas and lobular carcinoma in situ indicate the
importance of the methylation of the CDH1 promo-
ter in the pathogenesis of breast cancer.78 Although
many mechanisms, including mutation and loss of
heterozygosity (LOH), are attributed to the down-
regulation of CDH1 in breast cancer, CDH1 promoter
methylation is the mostly likely cause.78,79

The current criteria for detection and prognosis of
breast cancer include an abnormal breast biopsy,
tumor size, histological grade, estrogen and proges-
terone receptor status, and presence of the HER2/
Neu oncogene.80,81 Breast cancer can also be diag-
nosed by detecting the various aberrantly methy-
lated genes. MSP is currently being used to detect
the methylation status of various genes in breast
biopsy tissues samples.59 Presence of methylated
DNA in the nipple duct lavage fluids, needle
aspirates of the breast, and molecular staging of
sentinel lymph nodes are also used to predict breast
cancer development.58 Ductal carcinoma in situ
(DCIS), the most frequent breast cancer, can be
detected early by observing the methylation of a
panel of tumor suppressor or other cancer genes.82,83

A 60-sample study with ductal lavage fluid from
patients with a high risk of developing breast cancer
and patients with breast cancer revealed that a nine-
gene panel detection system using quantitative
methylation-specific polymerase chain reaction
(QM-MSP) can detect the rate of cancer cells more
effectively than cytological and histological studies
alone. Thus, earlier detection of breast cancer
formation is possible.84 Aberrant methylation of
four genes was detected by QM-MSP in the plasma
DNA of patients with breast cancer and tumors were
successfully detected in eight of 24 patients with
early-stage breast cancer.85 Loss of MGMT (O(6)-
methylguanine-DNA methyltransferase) was found
to be associated with DNAmethylation in a subset of
breast cancers.86 Although DNMT3b, a de novo
methyl transferase, is overexpressed in 30% of
breast cancers, its expression alone was not con-
sidered to be a prognostic factor for breast cancer
progression.87 Such studies highlight the impor-
tance of identifying specific methylated genes for
diagnostic purposes, and for monitoring the efficacy
of therapeutic modalities.

DNA methylation and colorectal cancer

Colorectal carcinoma is the third most common
cancer in developed countries.88 Although age and
other demographic and environmental features,
including gender, weight, nutritional intake, and
alcohol consumption, are prognostic of colorectal
cancer, epigenetic alterations are also causal.89

Aberrant methylation is gradually acquired in the
early stages of colorectal carcinoma.90 As in breast
cancer, both hypomethylation and hypermethyla-
tion of genes occur in colorectal cancer91,92 (Table 3).
The genes for p53 and for retinoic acid receptor
(RAR) are hypermethylated in colorectal cancer.108

A study with 65 colorectal carcinoma tissues
demonstrated hypermethylation of the gene for the
cell cycle regulatory protein, cyclin A1, in all cases,
and for cadherin-13 in 65% cases.96 Methylation did
not correlate significantly with any clinicopatholo-
gical feature, and changes in methylation appeared
in an early phase of colon carcinogenesis.96

Aberrant methylation of some genes, including
those for estrogen receptor a (ERa) and myoblast
determination 1-protein (MYOD), correlate with
aging and the prognosis of colorectal cancer.109

UDP-glucoronosyltransferase (UGT1A1) gene ex-
pression is silenced and transcriptional activity is
completely repressed in colon cancer cells due to
direct methylation of its promoter region.97 Treat-
ment with either the inhibitors of histone deacety-
lase or demethylating agents restores normal
expression of UGT1A1 in hypermethylated cells
but has no effect on hypomethylated cells.97

Rhee et al100 reported that DNA methyltrans-
ferases, DNMT1 and DNMT3b, are hypermethylated
in colorectal cancer. Other studies suggest that
methylation depends upon the type of cancer and
that colorectal cancer can progress in the absence of
DNMT1, as seen in the SW48 colorectal cancer cell
line.108,110 However, methylation can be reinitiated
by introducing DNMT1 to the SW48 colon cancer
cells lacking DNMT1 and DNMT3b.111 Therefore,
DNMT1 is potentially important in the hypermethy-
lation of CpG islands in the promoter region of many
genes in human cancer cells.

Colorectal tumors are often identified by the level
of their microsatellite instability (MSI), which is a
defect in the ability of repairing mistakes during
DNA replication. MSI, stratified as MSI high, MSI
low, and MSI stable, is commonly correlated with
the degree of the colorectal cancer methylator
phenotype (CIMP) when diagnosing colorectal can-
cer at the molecular level.112 CIMP is distinguished
as CIMP(þ ) or CIMP(�), although the existence of
CIMP is still controversial. Supporters suggest an
association with microsatellite instability (MSI) and
proximal location of the colonic tumor.113 A study
with 106 primary colorectal tumors, however, did
not support the existence of CIMP in human color-
ectal cancer and, consequently, it was regarded as a
statistical artifact.114 Colorectal cancer cannot be
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identified on the basis of tumor methylation status
and CIMP alone.

Hereditary non-polyposis colorectal cancer
(HNPCC, Lynch syndrome) accounts for 2–4% of
all colorectal cancers and aberrant methylation of
the mismatch repair genes, human mutL homolog 1
(hMLH1) or hMLH2, are the basis for the cancer.115

The combination of MSI-H and CIMP(�) is com-
monly observed in HNPCC.112 In a study with 97
colorectal adenoma cases, hMLH1 methylation was
more frequently observed in overweight or obese
patients.93 High-level MSI sporadic colon cancer
and HNPCC share histological features, proximal
tumor location, and presence of tumor-infiltrating
lymphocytes. They differ, however, in having wide-
spread promoter hypermethylation of specific genes
such as hMLH1 and BRAF.112 Fewer methylated
genes are found in HNPCC than in high-level MSI
colorectal tumors.116

Inhibitors of DNA methylation and
demethylators

DNA methylation is a reversible process in which
genes can be demethylated and restored to their
original expression and function. DNA methylation
inhibitors have been investigated as anticancer
agents, since they block the activity of DNMTs and
thus activate tumor suppressor genes54 (Figure 5).
The antisense oligonucleotide to human DNMT1,
MG98, acts as a DNA methylation inhibitor and
downregulates the activity of DNMT1. It has had
promising results in clinical trials in treating
cancers of the head and neck.117 Recently, two
novel inhibitors, NSC303530 and NSC401077, were
shown to inhibit DNMTs in vitro and in vivo by
blocking the active site of DNMT1.118 These inhibi-
tors have also been proposed as potential antitumor
drugs.118

Table 3 Genes methylated in colorectal cancer

Gene Description Hypo/hyper Reference

CDH13 E-cadherin 13 Hypo 6

ER Estrogen receptor Hypo 8

hMLH1 MutL homolog 1 Hypo 93

MBD2 Methyl CpG binding protein Hypo 94

MINT1 Methylated in tumor 1 Hypo 95

MINT3 Methylated in tumor 3 Hypo 95

SFRP1 Secreted frizzled-related protein 1 Hypo 96

UGT1A1 UDP-glucoronosyltransferase Hypo 97

APC Adenomatous polyposis coli Hyper 54

CDKN2a also known as p16 Hyper 93

CTDSPL Carboxy-terminal domain small phosphatase like Hyper 98

CIP1 Cyclin-dependent kinase inhibitor 1B Hyper 99

COX2 Cyclooxygenase 2 Hyper 96

Cyclin A1 Cyclin A1 Hyper 96

DNMT1 DNA methyltransferase1 Hyper 100

DNMT3b DNA methyltransferase 3b Hyper 100

GATA-4/GATA-5 Transcription factor GATA-4 Hyper 101

HIC1 Hypermethylated in cancer 1 Hyper 54

HME-1 Human epithelial cell marker 1 Hyper 102

KCNK15 Potassium channel subfamily K member 15 Hyper 98

MAGEA1 Melanoma antigen, family A, 1 Hyper 96

MGMT O(6)-methylguanine-DNA methyltransferase Hyper 93

MS Methionine synthase Hyper 103

MTHFD1 Methylenetetrahydrofolate dehydrogenase Hyper 103

MYOD-1 Myoblast determination 1-protein Hyper 103

N33 Tumor suppressor candidate 3 Hyper 96

p14ARF p14 alternate reading frame Hyper 71

p16INK4a p16 INK 4a Hyper 104

p53 p53 Hyper 38

PTEN Phosphatase and tensin homolog Hyper 96

RAR Retinoic acid receptor Hyper 96

RASSF1A Ras-association domain family protein 1A Hyper 69

SFRP2-5 Secreted frizzled-related protein 2,3,4,5 Hyper 105

SLIT1/SLIT3 Slit homolog 1 and 3 Hyper 106

TFF1-3 Trefoil factor 1, 2, 3 Hyper 101

TIMP3 Tissue inhibitor of metalloproteinase 3 Hyper 96

TROPOMYOSIN Tropomyosin Hyper 96

TS Thymidylate synthase Hyper 103

UCHL1 Ubiquitin carboxy-terminal hydrolase 1 Hyper 107

UGT1A1 UDP-glucoronosyltransferase Hyper 97

VHL von Hippel–Lindau syndrome Hyper 8

WNT9A Wing-type member 9A Hyper 98
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Demethylation of aberrantly silenced genes can
restore gene expression and function. Azacitidine
(5-aza-C) and decitabine (5-aza-20-deoxycytidine or
5-aza-20-CdR) are two potent DNA demethylating
agents. 5-aza-C was developed as a cancer chemo-
therapeutic agent and was thought to inhibit the
enzymes that methylate the cytosine residues in
DNA.10,119 However, it is now considered that it
demethylates methylated DNA and acts as an anti-
tumor agent in many cancer cells.120 Azacitidine is
more toxic than its analog, decitabine.22

Decitabine has a short in vivo half-life and is able
to reactivate previously silenced genes.121,122 In
clinical investigations in treating leukemia, decita-
bine was found to be most effective in an intensive
dose with a short treatment time.123 Decitabine is a
potent cytotoxic agent and shows in vitro antitumor
activity against breast cancer cells.124 Both azaciti-
dine and decitabine are effective in treating leuke-
mia, which is characterized by hypermethyl-
ation.35,125

Zebularine, another potent demethylator, was
found to be effective against cancer cells in many
studies. In earlier studies, it was found to have toxic
effects in cancer cell lines.73 It has been shown to
remove 25–60% of the methyl groups from methy-
lated genes in a panel of seven human tumor cell
lines.94 The most promising features of the drug
include its stability, low toxicity to normal cells, and
that it can be taken orally.126

Administration of decitabine can reactivate si-
lenced tumor suppressor genes and the histone
deacetylase inhibitor, LAQ824 (LAQ), can activate
genes related to cell cycle arrest.123,127 These agents
can synergistically produce greater antineoplastic
effects on MDA-MB-231 breast cancer cells, thereby
ensuring application of these agents for future
clinical trials.127 Lower doses of azacitidine and
trichostatin A (TSA) are required to re-express ER in
MDA-MB-231 (ER�) cells, when the drugs are used
in combination than alone.58 Thus, the combination

of drugs, which directly affects DNA methylation
with drugs, causing other epigenetic changes, has
considerable potential in increasing therapeutic
affects.

Cancer Prevention, Dietary Intake, and DNA
Methylation

Nutrition influences susceptibility to cancer. Ap-
proximately 35–50% of all cancers have a dietary
component in their etiology.128 Some food constitu-
ents can promote the onset of cancer. Deficiency of
fiber, folic acid, methionine/choline, zinc, selenium,
and chemicals found only in fruits and vegetables
all can also cause cancer.129 Excess intake of alcohol,
animal fats, and salt promote cancer.130 It was
predicted that the incidence of cancer in vegetarian
subjects would be lower than in those on a meat
diet. Even though the vegetarian diet has a lower
intake of vitamin B and lower content of methio-
nine, both of which are essential for eventual
methylation, this does not cause cancer.131

The role of folic acid in cancer is still controver-
sial. The methyl groups of 5-methylenetetrahydro-
folate is the precursor of the methyl group of
methionine and thereby of SAM.132 Low intake of
folate combined with high alcohol intake can result
in global hypomethylation and cause colorectal
cancer. An increased risk of breast cancer occurs if
folic acid is not metabolized correctly and the
resultant supply of methyl groups to DNA in pre-
menopausal women is insufficient.113,132

Low intake of folate is associated with an
increased risk of colorectal cancer.113 In vitro studies
have indicated that colon cancer cell lines, when
deprived of folic acid, have decreased viability.132

Uracil is misincorporated into DNA as a result of
folate deficiency. However, once a cancerous lesion
is present, folate intake enhances tumor growth.133

Methionine is taken as a nutritional supplement
in adulthood to correct some genetically based
epigenetic defects.29 However, excess intake of
methionine can also impair DNA methylation.
Nevertheless, folate deficiency, leading to aberrant
methylation of DNA, is not the sole cause of colon
carcinogenesis.

Caffeic acid and chlorogenic acid, two catechol
containing coffee polyphenols, inhibit DNA methy-
lation.134 They increase the formation of S-adenosyl-
L-homocysteine (SAH), an inhibitor of DNA methy-
lation. Partial inhibition of methylation in the
promoter region of the retinoic acid receptor beta
(RAR-b) gene by both caffeic acid and chlorgenic
acid was demonstrated in breast cancer cell lines
MCF-7 and MDA-MB-231.135

DNA Methylation and Aging

The risk of cancer increases with age. Only 10% of
children have a chance of getting cancer, whereas

Figure 5 DNA methylation inhibitors. Successful inhibition of
DNA methylation inhibitors (DNMTis) can prevent the suppres-
sion of tumor suppressor genes and continuous activation of
proto-oncogenes.
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adults have a 35% chance, because methylation of
CpG islands in non-malignant tissues increases but
the total number of methylated cysteine residues
decreases with age.81,136,137 Individual genes are
progressively methylated during aging due to chro-
mosomal instability.138 Genes that change methyla-
tion status with age are tissue specific. The c-myc
gene is hypomethylated in the spleen and the c-fox
is hypermethylated in the liver but not in the
spleen.28

The normal colonic mucosa of older females
has higher methylation levels, making these cells
more susceptible to differentiate into malignant
cells.103,139 Hypermethylation does not always result
in malignancy. For example, hypermethylation of
the estrogen receptor gene was observed in both
normal and cancer colon tissues, suggesting that the
relationship between hypermethylation and age in
cancer might not be simple, and requires a more
careful analysis.8

Concluding remarks

DNA methylation is important in gene regulation
and expression. It is imperative to learn more about
the regulation of how this simple and basic process
becomes aberrant. The complete biological mechan-
isms that initiate and maintain methylation of DNA
need to be fully explained. Both hypomethylation
and hypermethylation of proto-oncogenes and/or
tumor suppressor genes occurs in various cancers.
Many known genes are aberrantly methylated in
breast and colorectal cancers.

In studies with established inhibitors of DNA
methylation and demethylation, some genes were
shown to be able to resume normal function.
Zebularine was shown to be effective, without many
toxic affects, in clinical trials. Despite constant
efforts, the most effective and least toxic drugs are
yet to be discovered. Indeed, even more questions
arise from the plethora of recent advances in our
understanding of the underlying mechanisms of
methylation in cancer and other malignancies.
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