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Synovial sarcoma accounts for between 6 and 10% of childhood sarcomas and histological diagnosis can be
challenging, even for experienced pathologists. Several other tumors enter the differential diagnosis, including
malignant peripheral nerve sheath tumor, Ewing sarcoma/primitive neuroectodermal tumor and undifferentiated
sarcoma. Several recent reports utilizing expression array techniques have documented expression of the
MYCN oncogene in synovial sarcoma. In order to more fully investigate this finding, a series of 12 synovial
sarcomas and 29 other sarcomas (four malignant peripheral nerve sheath tumors, 15 Ewing sarcoma/primitive
neuroectodermal tumors, 10 undifferentiated sarcomas) were examined for MYCN expression and gene
amplification. By RT-PCR, nine of 12 synovial sarcomas (75%) expressed MYCN. Five synovial sarcomas (42%)
expressed MYCN at high levels. Of the other sarcomas, one malignant peripheral nerve sheath tumor (25%) and
five Ewing sarcoma/primitive neuroectodermal tumors (33%) expressed MYCN at low levels, and all other cases
were negative for MYCN. None of the synovial sarcomas had genomic amplification, suggesting that high MYCN
expression levels resulted from epigenetic phenomena. Examination of selected downstream targets of MYCN
in synovial sarcoma revealed expression of MMCM7 (minichromosome maintenance protein 7) in all synovial
sarcomas, and expression of nestin (n=10; 83%), ID2 (inhibitor of DNA binding protein 2) (n=6; 50%) and IRP1
(multidrug resistance protein 1) (n=1; 8%) in a subset of synovial sarcomas. Expression of downstream targets
did not correlate with expression of MYCN. Neither MYCN nor expression of downstream targets significantly
correlated with metastases at presentation, progression-free survival or overall survival in this small series. In
summary, high levels of MYCN expression was useful for distinguishing synovial sarcoma from other
childhood-spindled cell sarcomas with specificity and sensitivity of 100 and 42%, respectively, in this series.
The clinical and biological significance of this finding deserves further study.
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Synovial sarcoma is a soft tissue tumor of uncertain
mesenchymal cell origin. It accounts for 2-6% of
sarcomas in childhood" and up to 10% of sarcomas
in late childhood and early adulthood,* with most
cases occurring between the ages of 15 and 35
years.” The most common sites of occurrence are the
extremities, usually around joints, with smaller
numbers occurring in the head and neck, retro-
peritoneum and mediastinum."® Histologically,
there are four major types; biphasic, monophasic

Correspondence: Dr GR Somers, MBBS, PhD, FRCPA, Division of
Pathology, Department of Paediatric Laboratory Medicine, Hospi-
tal for Sick Children, 555 University Avenue, Toronto, ON,
Canada M5G 1X8.

E-mail: gino.somers@sickkids.ca

Received 4 October 2006; revised 2 March 2007; accepted 7 March
2007; published online 27 April 2007

spindled, monophasic epithelioid and poorly differ-
entiated, with the former two being the most
common."** Synovial sarcoma is associated with a
specific balanced translocation t(X:18)(p11.2;q11.2)
in more than 90% of cases.*® The rearrangement
fuses the SYT gene on chromosome 18q11.2 to one
of the SSX gene family members (SSX1, SSX2 or
SSX4) located on Xp11.2.77'° Prognostic indicators
of synovial sarcoma include age, size and morphol-
ogy,* as well as molecular genetics, with SSX2
translocations associated with a better outcome.
The diagnosis of synovial sarcoma can be difficult
to make, especially for the monophasic-spindled
and poorly differentiated variants. The histological
differential diagnoses include other childhood sar-
comas, namely malignant peripheral nerve sheath
tumor, Ewing sarcoma/primitive neuroectodermal
tumor and undifferentiated sarcoma.'*"® Malignant
peripheral nerve sheath tumor can be particularly



difficult to distinguish from synovial sarcoma, as
they share several morphological, immunohisto-
chemical and ultrastructural features.”** Some
authors have even reported the rare occurrence of
a t(X;18) translocation in malignant peripheral nerve
sheath tumor,'® adding further difficulty in differ-
entiating these two tumors. Thus, markers specifi-
cally expressed in either one tumor or the other
would be extremely useful.

MYCN is a member of the MYC family of
oncogenes, which also include CMYC and LMYC.
Amplification of the MYCN gene is associated with
advanced tumor stage, tumor progression and poor
outcome in neuroblastomas.”” Several downstream
targets of MYCN have been described and include
the genes encoding the multidrug resistance protein
1 (MRP1),® the minichromosome maintenance
protein 7 (MCM?7),*® the inhibitor of DNA binding
protein 2 (ID2)*° and the intermediate filament
nestin.*!

Amplification and overexpression of MYCN has
been described in tumors other than neuroblastoma,
including alveolar rhabdomyosarcoma,** astrocyto-
ma,?® medulloblastoma,?* retinoblastoma,?® Wilms
tumor®® and breast carcinoma.?” Two recent studies
utilizing cDNA expression array analysis documen-
ted MYCN expression in synovial sarcoma.?®*° With
respect to malignant peripheral nerve sheath tumor,
one study has documented MYCN expression,*
whereas others have not.*>*" MYCN expression has
not been reported in Ewing sarcoma/primitive
neuroectodermal tumor.**** In order to investigate
the potential diagnostic usefulness of these findings,
the current study examined the expression pattern
of MYCN in a series of 12 synovial sarcomas and 29
other pediatric sarcomas by RT-PCR. In addition, the
status of MYCN gene amplification and expression
of downstream targets of MYCN was assessed in
synovial sarcoma.

Materials and methods

Tumor Selection

Twelve cases of synovial sarcoma diagnosed be-
tween 1990 and 2004 were selected from the files of
the Hospital for Sick Children, Toronto. All tumors
were positive for the SYT/SSX fusion transcript
indicative of the t(X;18)(p11.2;q11.2) chromosomal
rearrangement. A series of other sarcomas entering
the differential diagnosis of synovial sarcomas were
also tested and included four malignant peripheral
nerve sheath tumors (S100 positive, t(X;18) nega-
tive), 15 Ewing sarcoma/primitive neuroectodermal
tumors (CD99 positive, EWS-rearrangement posi-
tive) and 10 undifferentiated sarcomas (see Somers
et al*?* for selection criteria). A series of neuroblas-
tomas diagnosed during the same time period were
used as a control group. The study design and
implementation were approved by the Hospital for
Sick Children Research Ethics Board.
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RT-PCR for SYT/SSX Fusion Transcripts and MYCN
and MRP1 Gene Expression

RNA was extracted from fresh snap-frozen tissue
using routine Trizol-based methods. RT-PCR for the
SYT/SSX1 and SYT/SSX2 fusion transcripts was
performed according to previously published proto-
cols.?* Semiquantitative RT-PCR for MYCN gene
expression was performed using MYCN primers
(MYCN forward 5-CGA CCA CAA GGC CCT CAG
TA-3' and MYCN reverse 5-CAG CCT TGG TGT
TGG AGG AG-3') and PBGD primers (PBGD sense
5'-CAT GTC TGG TAA CGG CAA TGC GGC TGC-3' and
PBGD antisense 5-GAA CTC CAG ATG CGG GAA
CTT TC-3'). The expression levels for MYCN were
interpreted as high (similar to the level of expression
in the neuroblastoma cell line NUB-7), low (similar
to the level of expression in neuroblastoma cell line
SK-N SH) or negative (normal tonsil RNA). Semi-
quantitative RT-PCR for MRP1 gene expression
was performed using MRP1 primers (MRP1 forward
5'-TCT CTC CCG ACA TGA CCG AGG-3' and MRP1
reverse 5-CCA GGA ATA TGC CCC GAC TTC-3')
and PBGD primers as for the MYCN assay (see
above). Expression levels of MRP1 were interpreted
as high (similar to expression IMR32 cell line) or
low (similar to expression of RNA from tonsil).

PCR for MYCN Amplification

DNA was extracted from fresh snap-frozen tissue
using routine methods. Primers and conditions for
semiquantitative PCR amplification of the MYCN
gene were performed according to previously pub-
lished protocols.?®

Chromogenic In Situ Hybridization for MYCN Gene
Amplification

Chromogenic in situ hybridization (CISH) was
performed using the Spotlight® CISH polymer
detection kit (Zymed Laboratories, San Francisco,
CA, USA) using the digoxigenin-labeled Spotlight®™
N-MYC probe (Zymed Laboratories) as described
previously.®® Scoring of the histological sections for
amplification was performed according to pre-
viously published criteria.*® Briefly, amplification
was defined as greater than 10 signals per tumor cell
nucleus, or the presence of homogenously stained
regions within tumor cell nuclei.

Immunohistochemistry for ID2, MCM?7 and Nestin

Immunohistochemical analyses were performed on
4-um thick sections using the Ventana DAB kit as
per the manufacturer’s instructions (Ventana Medi-
cal Systems, Tucson, AZ, USA). Antibodies tested
were against ID2 (1:250, Santa Cruz Biotechnology,
Santa Cruz, CA, USA), MCM7 (1:100, Santa Cruz)
and nestin (1:200, Chemicon International, Temecula,
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CA, USA). Immunohistochemical stains were con-
sidered either positive or negative using the follow-
ing scoring system. The sections were scored as per
previously published criteria."* Briefly, scores for
intensity were 1 for low, 2 for moderate and 3 for
high, with the positive control used as the standard
for high intensity. The distribution of staining was
scored as 1 for <10% of cells positive, 2 for 11-50%
of cells positive and 3 for >50% of cells positive. A
combined score of 4 or more was considered
positive; <4 was considered negative.

Clinical Data

The material reviewed included operative reports
(to identify extent of tumor resection at diagnosis),
medical charts and the Hematology/Oncology data-
base at the Hospital for Sick Children. Clinical
parameters obtained were progression-free survival,
the presence or absence of metastases at presenta-
tion and overall survival. Progression-free survival
was defined as absence of clinical and radiological
recurrence at the primary site up to the time of most
recent follow-up. Recurrence was defined as re-
lapsed disease occurring after documented disease
remission. Progression-free survival and overall

survival were calculated from the start of treatment
to the time of recurrence or death from any cause,
respectively.

Statistical Analyses

Non-parametric data were compared using Fisher’s
exact test. For each clinical and morphological
parameter, the association with progression-free
survival and overall survival was characterized by
univariate analysis using the Kaplan—-Meier method
and log-rank test. Statistical analyses were per-
formed using SPSS version 13.0 software. Signifi-
cance was defined as P<0.05.

Results
Tumor Histology and RT-PCR for t(X;18)

Twelve synovial sarcomas from nine male subjects
and three female subjects were included in the
study. Of the 12 synovial sarcomas, four had
biphasic morphology, seven had monophasic-

spindled morphology and one was poorly differ-
entiated (Figure 1, Table 1). All tumors were positive
for the characteristic SYT/SSX fusion transcript.

Figure 1 Examples of synovial sarcomas used in the study included biphasic (a), monophasic (b) and poorly differentiated variants (c).

Hematoxylin and eosin, x 200.

Table 1 Clinicopathological summary of the 12 t(X;18)-positive synovial sarcomas used in the current study

Age Sex Histology MYCN ID2 Presentation Recurrence Overall survival
6 months M Biphasic ++ POS Localized Yes DOD
15 years F Biphasic ++ POS Localized Yes AWD
11 years M Monophasic ++ POS Localized No A

17 years F Monophasic ++ POS Localized No A

12 years M Poorly-differentiated ++ NEG Localized No A

18 years M Biphasic + POS Localized Yes A

16 years M Biphasic + POS Metastases No AWD
10 years M Monophasic + NEG Localized No A

14 years M Monophasic + NEG Localized No A

10 years M Monophasic - NEG Metastases No DOD
13 years M Monophasic - NEG Localized No A

14 years F Monophasic - NEG Metastases No DOD

Abbreviations: ++, high levels MYCN expression; +, low levels MYCN expression; —, no MYCN expression; A, alive; DOD, died of disease; AWD,

alive with disease.
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MYCN Gene Expression and Amplification in
Pediatric Sarcomas

RNA was extracted from 12 synovial sarcomas. Nine
of the 12 synovial sarcomas (75%) showed some
expression of MYCN, with five (42%; two biphasic,
two monophasic, one poorly differentiated) showing
high levels of expression and four showing low
levels of expression (Table 1). The synovial sarco-
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mas with overexpression had expression levels
comparable to that seen in neuroblastoma controls
with MYCN gene amplification (Figure 2). High
levels of MYCN expression were not associated with
a specific histologic subtype (P=0.8485, Fisher’s
exact test). Of the other sarcomas tested, 5/15 Ewing
sarcoma/primitive neuroectodermal tumors, 0/10
undifferentiated sarcomas and 1/4 malignant per-
ipheral nerve sheath tumors expressed MYCN. All of

Ladder

100 BP NVB-7 SK-N-SH Tonsil Water

SS-1 SS-2 50 BP
ladder

PBGD
4—

MYCN
<—

Figure 2 Semiquantitative RT-PCR analysis of the MYCN gene expression using RNA extracted from samples of synovial sarcoma (SS-1,
patient 1; SS-2, patient 2). NVB-7, control for high MYCN expression; tonsil, control for negative MYCN expression; SK-N-SH, control for
low MYCN expression; water control; SS-1 and SS-2, synovial sarcoma samples exhibiting high levels of MYCN expression.

Figure 3 CISH for the MYCN gene showing one to two signals per nucleus, consistent with diploidy in paraffin sections (a). Focal
aneuploidy was seen in some sections as scattered nuclei with greater than two signals (b), however, amplification (> 10 signals in the
majority of tumor cells) was not present. Hematoxylin counterstain, x 600.
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the non-synovial sarcomas expressed MYCN at low
levels. Thus, high levels of MYCN expression was
useful for distinguishing synovial sarcoma from
other childhood-spindled cell sarcomas with speci-
ficity and sensitivity of 100 and 42%, respectively,
in this series (Table 2).

MYCN gene amplification in the series of synovial
sarcomas was tested for by a combination of CISH
(all cases) and PCR (four cases). None of the synovial

Table 2 Summary of MYCN expression status in all tumors

Tumor type Negative  Low levels  High levels
for of MYCN of MYCN

MYCN  expression  expression

Synovial sarcoma 3 4 5

Malignant peripheral 3 1 0

nerve sheath tumor

Ewing sarcoma/primitive 10 5 0

neuroectodermal tumor

Undifferentiated 10 0 0

sarcoma

Wt AN
Fti‘ g:f

e

sarcomas showed amplification of the MYCN gene
by CISH (Figure 3) or PCR.

MRP1 Expression by RT-PCR in Synovial Sarcoma

Of the 12 synovial sarcomas, only one tumor
expressed MRP in the low-mid range; this was
associated with high levels of MYCN expression. All
other tumors had negligible levels of expression.

ID2, MCM7 and Nestin Expression by
Immunohistochemistry in Synovial Sarcoma

Examination of downstream targets of MYCN in
synovial sarcomas revealed expression of MCM?7 in
all cases of synovial sarcoma. Nestin was expressed
in 10 cases of synovial sarcoma (83%) and IDZ2 in six
cases (50%) (Figure 4). Expression of downstream
targets did not significantly correlate with high
levels of MYCN expression; however, expression of
MYCN at either low or high levels was associated
with a trend toward expression of ID2 (P=0.0909,
Fisher’s exact test) (Table 1).

Figure 4 Immunohistochemistry for ID2 (positive in a, negative in b), MCM?7 (c) and nestin (d). Both ID2 and MCM7 show nuclear
staining, whereas nestin has a cytoplasmic pattern of staining. Hematoxylin counterstain, x 200.
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Prognostic Impact in Synovial Sarcoma

Expression of MYCN, MRP1, MCM?7, ID2 or nestin
was not significantly associated with metastases at
presentation, local recurrence or survival. However,
tumors that recurred locally were all ID2-positive
(3/3, 100%), compared with 3/9 (33%) tumors
without local recurrence (P=0.1850).

Discussion

According to previous expression array stu-
dies,*®?*® synovial sarcomas express the oncogene
MYCN. Significant levels of expression of MYCN
were not found in other sarcomas, including
liposarcoma, clear cell sarcoma and fibrosarcoma,
and MYCN thus served as one of the genes
differentiating synovial sarcoma from other spin-
dle cell tumors.?® In the current study, the majority
of synovial sarcomas expressed MYCN by RT-PCR
and almost 50% expressed MYCN at high levels.
No correlation between histological subtype
and MYCN expression was found, which is in
keeping with the findings of Nagayama et al.?®
Of the other sarcomas, a minority of malignant
peripheral nerve sheath tumors and Ewing
sarcoma/primitive neuroectodermal tumors ex-
pressed MYCN at low levels only; none of the
non-synovial sarcomas expressed MYCN at high
levels. The low levels of MYCN expression seen in
malignant peripheral nerve sheath tumors is in
keeping with a previous expression array study,
where malignant peripheral nerve sheath tumors
were found to express MYCN at levels lower than
that seen in synovial sarcomas.?® Thus, in the
current series of pediatric sarcomas, only synovial
sarcomas expressed MYCN at high levels and was
a useful test for distinguishing synovial sarcomas
from other sarcomas with a specificity of 100% but
sensitivity of only 42%, as several cases of
synovial sarcoma expressed MYCN at low levels
or not at all.

None of the cases of synovial sarcoma showed
MYCN gene amplification. The lack of genomic
amplification of MYCN in synovial sarcoma
suggests alternative mechanisms are responsible
for the high MYCN expression, such as alterations
in transcriptional activity®” or dysregulation of
protein degradative pathways, as described in
neuroblastoma.®®®° In neuroblastoma, the clinical
significance of high levels of MYCN expression
without gene amplification remains controversial;
some studies suggest no clinical significance,***'
whereas others have reported a significant
association with poorer outcome in a subset of
older patients but not in infants.*” In the present
series of synovial sarcoma, a high level of MYCN
expression in the absence of MYCN amplifica-
tion was not associated with a significant differ-
ence in local recurrence, metastatic rate or overall
survival.
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The expression of several downstream targets of
MYCN in synovial sarcoma was also assessed. MRP1
encodes a member of the superfamily of ATP-
binding cassette transporters, and functions as a
multispecific organic anion transporter.*® Increased
expression of MRP1 is associated with increased
drug resistance and enhanced MRP1-mediated drug
efflux.’® MCM7 is a DNA-binding protein essential
for replication of DNA during the transition of G1 to
S phase of the cell cycle,** and increased expression
of MCM7 has been demonstrated in proliferating
tissues.*® ID2 is a helix-loop-helix transcription
factor*® that binds to and inactivates the RB protein,
thus stimulating cell proliferation by inhibiting the
RB tumor suppressor pathway.?® Nestin is an
intermediate filament and is thought to play a role
in tumor development and aggressiveness.*”*®
MYCN has been shown to bind directly to the
promoters of all four genes,"®*"' resulting in in-
creased levels of expression of the resultant proteins
in MYCN-amplified tumors. Although the current
study did not find a significant correlation between
high levels of MYCN expression and expression of
downstream targets MRP1, MCM?7 and nestin, there
was a trend toward significance with expression of
ID2. The lack of statistical significance raises two
possible explanations. Firstly, the number of tumors
in the present series is relatively small, and a larger
series may be required to show a statistically
significant correlation. For example, ID2 was ex-
pressed in 67% of synovial sarcomas with low or
high levels of MYCN expression, but was not
expressed at all in synovial sarcomas negative for
MYCN. Secondly, the expression of such targets may
be controlled by factors other than MYCN. For
example, the MCM?7 protein has numerous trans-
activation sites for the E2F transcription factor,*
and expression of MCM? is increased by activation
of E2F in fibroblasts.®® Furthermore, the nestin gene
has several putative binding sites for the transcrip-
tion factors HIF-20 and GATA within its first
intron,®* suggesting a role for multiple transcription
factors in nestin expression.

The present study did not show a significant
correlation between expression of MYCN or down-
stream targets with progression-free survival, overall
survival or metastases at presentation. Nonetheless,
all cases that recurred locally were ID2-positive,
compared with only three of nine cases that did not
recur. This result, although not statistically signifi-
cant in our small series, is worthy of further
investigation. Overexpression of ID2 results in
transformation of NIH 3T3 fibroblasts in vitro,®?
and embryonic fibroblasts from ID2-null mice show
noticeably lower rates of division. Furthermore, the
correlation of MYCN and ID2 expression has been
described in neuroblastoma,®® and it has been
suggested that expression of ID2 is a better indicator
of poor outcome than MYCN amplification. Such
results provide a possible explanation for the
oncogenic mechanism of MYCN overexpression
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in vivo.** However, the prognostic significance of
ID2 expression has been refuted by others, with
some reporting no such association between ID2
expression and poor outcome in neuroblastomas
and neuroblastoma cell lines.>®

The current study identified a group of synovial
sarcomas with high levels of MYCN expression.
Such overexpression was not seen in other sarcomas
entering the differential diagnosis of synovial sarco-
ma, and provides evidence that testing for MYCN
expression may be a useful ancillary investigation in
the differentiation of pediatric-spindled and mono-
morphic sarcomas. The biological and prognostic
significance of such a finding is as yet unclear and
deserves further study.
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