Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role of protozoan grazing in relieving iron limitation of phytoplankton

Abstract

RECENT evidence indicates that iron is a limiting factor in primary production in some areas of the oceans1,2. In sea water, iron is largely present in the form of particulate and colloidal phases which are apparently unavailable for uptake by phytoplankton3–5. Several mechanisms have been proposed whereby non-reactive iron may be converted into more labile forms (for example, thermal dissolution6, photochemical reactions7,8 and ligand complexation9). Here we report that digestion of colloidal iron in the acidic food vacuoles of protozoan grazers may be a mechanism for the generation of 'bioavailable' iron from refractory iron phases. We have demonstrated several grazer-mediated effects on colloidal ferrihydrite, including a decrease in colloid size, an increase in colloid lability as determined by competitive ligand-exchange techniques, and an increase in the bioavailability of colloids to iron-limited diatoms. These results indicate that protozoan grazers may significantly enhance the supply of iron to marine phytoplankton from terrestrial sources.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Martin, J. H. & Fitzwater, S. E. Nature 331, 341–343 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Martin, J. H. et al. Nature 371, 123–129 (1994).

    Article  ADS  CAS  Google Scholar 

  3. Wells, M. L., Mayer, L. M. & Guillard, R. R. L. Mar. Chem. 33, 23–40 (1991).

    Article  CAS  Google Scholar 

  4. Rich, H. W. & Morel, F. M. M. Limnol. Oceanogr. 35, 652–662 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Martin, J. H., Gordon, R. M., Fitzwater, S. & Broenkow, W. W. Deep Sea Res. 36, 649–680 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Wells, M. L., Zorkin, N. S. & Lewis, A. G. J. mar. Res. 41, 731–746 (1983).

    Article  CAS  Google Scholar 

  7. Waite, D. T. & Morel, F. M. M. Environ. Sci. Technol. 18, 860–868 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Wells, M. L. & Mayer, L. M. Deep Sea Res. 38, 1379–1395 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Wells, M. L., Price, N. M. & Bruland, K. W. Mar. Chem. 48, 157–182 (1995).

    Article  CAS  Google Scholar 

  10. Azam, F. T. et al. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).

    Article  ADS  Google Scholar 

  11. Caron, D. A., Goldman, J. C. & Dennett, M. R. Hydrobiology 159, 27–40 (1988).

    Article  Google Scholar 

  12. Caron, D. A. in Protozoa and their Role in Marine Processes NATO ASI Series Vol. G 25 (eds Reid, P. C., Turley, C. M. & Burkhill, P. H.) 387–416 (Springer, Berlin, 1990).

    Google Scholar 

  13. Fenchel, T. Ecology of Protozoa: The Biology of Free-living Phagotrophic Protists (Science Tech, Madison, 1987).

    Google Scholar 

  14. Fok, A. K., Lee, Y. & Alien, R. D. Protozool. 29, 409–414 (1982).

    Article  Google Scholar 

  15. Fenchel, T. & Patterson, D. J. Mar. Micr. Food Webs 3, 9–19 (1988).

    Google Scholar 

  16. Wells, M. L., Mayer, L. M. & Guillard, R. R. L. Mar. Ecol. Prog. Ser. 69, 93–102 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Wu, J. & Luther, G. W. Mar. Chem. 50, 159–178 (1995).

    Article  CAS  Google Scholar 

  18. Wu, J. & Luther, G. W. Limnol. Oceanogr. 39, 1119–1129 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Berninger, U.-G., Caron, D. A., Sanders, R. W. & Finlay, B. J. in The Biology of Free-living Heterotrophic Flagellates. Systematics Association Special Vol. 45 (eds Patterson, D. J. & Larsen, J.) 39–56 (Clarendon, Oxford, 1991).

    Google Scholar 

  20. Voelker, B. M. & Sedlak, D. L. Mar. Chem. 50, 93–102 (1995).

    Article  CAS  Google Scholar 

  21. Wells, M. L. et al. Nature 353, 248–250 (1991).

    Article  ADS  CAS  Google Scholar 

  22. Nagata, T. & Kirchman, D. L. Mar. Ecol. Prog. Ser. 68, 1–5 (1990).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbeau, K., Moffett, J., Caron, D. et al. Role of protozoan grazing in relieving iron limitation of phytoplankton. Nature 380, 61–64 (1996). https://doi.org/10.1038/380061a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/380061a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing