Role of protozoan grazing in relieving iron limitation of phytoplankton

Abstract

RECENT evidence indicates that iron is a limiting factor in primary production in some areas of the oceans1,2. In sea water, iron is largely present in the form of particulate and colloidal phases which are apparently unavailable for uptake by phytoplankton3–5. Several mechanisms have been proposed whereby non-reactive iron may be converted into more labile forms (for example, thermal dissolution6, photochemical reactions7,8 and ligand complexation9). Here we report that digestion of colloidal iron in the acidic food vacuoles of protozoan grazers may be a mechanism for the generation of 'bioavailable' iron from refractory iron phases. We have demonstrated several grazer-mediated effects on colloidal ferrihydrite, including a decrease in colloid size, an increase in colloid lability as determined by competitive ligand-exchange techniques, and an increase in the bioavailability of colloids to iron-limited diatoms. These results indicate that protozoan grazers may significantly enhance the supply of iron to marine phytoplankton from terrestrial sources.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Martin, J. H. & Fitzwater, S. E. Nature 331, 341–343 (1988).

  2. 2

    Martin, J. H. et al. Nature 371, 123–129 (1994).

  3. 3

    Wells, M. L., Mayer, L. M. & Guillard, R. R. L. Mar. Chem. 33, 23–40 (1991).

  4. 4

    Rich, H. W. & Morel, F. M. M. Limnol. Oceanogr. 35, 652–662 (1990).

  5. 5

    Martin, J. H., Gordon, R. M., Fitzwater, S. & Broenkow, W. W. Deep Sea Res. 36, 649–680 (1989).

  6. 6

    Wells, M. L., Zorkin, N. S. & Lewis, A. G. J. mar. Res. 41, 731–746 (1983).

  7. 7

    Waite, D. T. & Morel, F. M. M. Environ. Sci. Technol. 18, 860–868 (1984).

  8. 8

    Wells, M. L. & Mayer, L. M. Deep Sea Res. 38, 1379–1395 (1991).

  9. 9

    Wells, M. L., Price, N. M. & Bruland, K. W. Mar. Chem. 48, 157–182 (1995).

  10. 10

    Azam, F. T. et al. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).

  11. 11

    Caron, D. A., Goldman, J. C. & Dennett, M. R. Hydrobiology 159, 27–40 (1988).

  12. 12

    Caron, D. A. in Protozoa and their Role in Marine Processes NATO ASI Series Vol. G 25 (eds Reid, P. C., Turley, C. M. & Burkhill, P. H.) 387–416 (Springer, Berlin, 1990).

  13. 13

    Fenchel, T. Ecology of Protozoa: The Biology of Free-living Phagotrophic Protists (Science Tech, Madison, 1987).

  14. 14

    Fok, A. K., Lee, Y. & Alien, R. D. Protozool. 29, 409–414 (1982).

  15. 15

    Fenchel, T. & Patterson, D. J. Mar. Micr. Food Webs 3, 9–19 (1988).

  16. 16

    Wells, M. L., Mayer, L. M. & Guillard, R. R. L. Mar. Ecol. Prog. Ser. 69, 93–102 (1991).

  17. 17

    Wu, J. & Luther, G. W. Mar. Chem. 50, 159–178 (1995).

  18. 18

    Wu, J. & Luther, G. W. Limnol. Oceanogr. 39, 1119–1129 (1994).

  19. 19

    Berninger, U.-G., Caron, D. A., Sanders, R. W. & Finlay, B. J. in The Biology of Free-living Heterotrophic Flagellates. Systematics Association Special Vol. 45 (eds Patterson, D. J. & Larsen, J.) 39–56 (Clarendon, Oxford, 1991).

  20. 20

    Voelker, B. M. & Sedlak, D. L. Mar. Chem. 50, 93–102 (1995).

  21. 21

    Wells, M. L. et al. Nature 353, 248–250 (1991).

  22. 22

    Nagata, T. & Kirchman, D. L. Mar. Ecol. Prog. Ser. 68, 1–5 (1990).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.