Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

X-ray holography with atomic resolution

Abstract

DIFFRACTION methods for crystallographic structure determination suffer from the so-called 'phase problem'; a diffraction pattern provides intensity but not phase information for the scattered beams, and therefore cannot be uniquely inverted to obtain the crystal structure of a sample. Holographic methods1, on the other hand, offer a means of extracting both intensity and phase information. To be useful for crystallographic applications, holography must be implemented with radiation of sufficiently small wavelength to resolve atomic-scale features2. One method, electron-emission holography3–9, uses electron waves and is a powerful tool for studying surface structure; but it cannot image the internal structure of solids because of complications arising from the highly anisotropic nature of electron scattering processes. A proposed alternative method uses X-rays2,10–13, which scatter more isotropically than electrons. Here we demonstrate the efficacy of atomic-scale X-ray holography by obtaining direct images of the three-dimensional arrangement of strontium atoms in the cubic perovskite SrTiO3. With more intense synchrotron sources for illumination, and with the development of improved X-ray detectors, X-ray holography should become a powerful general technique for unambiguous structure determination in condensed matter systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gabor, D. Nature 161, 777–778 (1948).

    Article  ADS  CAS  Google Scholar 

  2. Szöke, A. in Short Wavelength Coherent Radiation: Generation and Applications (eds Attwood, D. T. & Boker, J.) 361–467 (AIP Conf. Proc. No. 147, American Institute of Physics, New York, 1986).

    Google Scholar 

  3. Harp, G. R., Saldin, D. K. & Tonner, B. P. Phys. Rev. Lett. 65, 1012–1015 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Thevuthasan, S. et al. Phys. Rev. Lett. 70, 595–598 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Terminello, L. J., Barton, J. J. & Lapiano-Smith, D. A. Phys. Rev. Lett. 70, 599–602 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Li, H., Tong, S. Y., Naumovic, D., Stuck, A. & Osterwalder, J. Phys. Rev. B47, 10036–10039 (1993).

    Article  CAS  Google Scholar 

  7. Saldin, D. K., Harp, G. R. & Chen. X. Phys. Rev. B48, 8234–8244 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Han, Z. L. et al. Surf. Sci. 258, 313–327 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Wei, C. M., Tong, S. Y., Wedler, H., Mendez, M. A. & Heinz, K. Phys. Rev. Lett. 72, 2434–2437 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Tegze, M. & Faigel, G. Europhys. Lett. 16, 41–46 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Maalouf, G. J., Hoch, J. C., Stern, A. s., Szöke, H. & Szöke, A. Acta crystallogr. A49, 866–871 (1993).

    Article  Google Scholar 

  12. Len, P. M., Thevuthasan, S., Fadley, C. S., Kaduwela, A. P. & Van Hove, M. A. Phys. Rev. B50, 11275–11278 (1994).

    Article  CAS  Google Scholar 

  13. Szöke, A. Acta crystallogr. A49, 853–866 (1993).

    Article  Google Scholar 

  14. Mössbauer, R. L. Z. Phys. 151, 124–143 (1958); Naturwissenschaften 45, 538–539 (1958).

    Article  Google Scholar 

  15. Barton, J. J. Phys. Rev. Lett. 61, 1365–1359 (1988).

    Article  ADS  Google Scholar 

  16. Saldin, D. K. & de Andres, P. L. Phys. Rev. Lett. 64, 1270–1273 (1990).

    Article  ADS  CAS  Google Scholar 

  17. Chen, X. & Saldin, D. K. Phys. Rev. B50, 17463–17470 (1994).

    Article  CAS  Google Scholar 

  18. Barton, J. J. Phys. Rev. Lett. 67, 3106–3109 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Tong, S. Y. & Huang, H. & Wei, C. M. Phys. Rev. B46, 2452–2459 (1992).

    Article  ADS  MathSciNet  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tegze, M., Faigel, G. X-ray holography with atomic resolution. Nature 380, 49–51 (1996). https://doi.org/10.1038/380049a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/380049a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing