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Microsatellite instability and loss of heterozygosity has been implicated in ovarian carcinogenesis. The
reported frequency of microsatellite instability in human ovarian cancer varies significantly owing to the use of
heterogeneous tumor histotypes and various microsatellite markers in different laboratories. In this study, we
determined the frequency of microsatellite instability in 74 ovarian endometrioid carcinomas using four
microsatellite markers (BAT25, BAT26, D5S346, D17S250), and examined hMLH1 and hMSH2 protein
expression. In all, 20% of the tumors were microsatellite instability high (two or more markers showing
instability) and 12% were microsatellite instability low (one marker showed instability). Loss of hMLH1 and/or
hMSH2 expression was found in nine of 15 microsatellite instability-high tumors. The microsatellite instability-
high phenotype tended to occur more frequently in low-grade tumors (P¼ 0.053), but did not correlate with
clinical stage. Totally, 38% of cases also displayed loss of heterozygosity at D17S250; this loss of
heterozygosity was associated with high clinical stage (P¼ 0.097). Our results indicate that both microsatellite
and loss of heterozygosity at D17S250 are involved in the development of ovarian endometrioid carcinoma.
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The genetic pathways involved in the development
of human ovarian cancer are poorly defined because
of the lack of morphologically well-defined precur-
sor lesions and the many different histologic sub-
types. Both microsatellite instability and loss of
heterozygosity have been implicated in ovarian
carcinogenesis. Microsatellite instability results
from the inactivation of genes involved in DNA
mismatch repair. Defective DNA mismatch repair
gene function is thought to promote tumorigenesis
by accelerating mutations in oncogenes and tumor
suppressor genes. Microsatellite instability is com-
monly seen in hereditary nonpolyposis colorectal
cancer syndrome.1 This is caused by loss of function
of DNA mismatch genes such as hMLH1, hMSH2,
hPMS1, hPMS2, hMSH3, and hMSH6.1 Loss of
expression of either hMLH1 or hMSH2 has been
described in these tumors and contributed to the

development of most microsatellite instability phe-
notypes.2–5

The reported frequency of microsatellite instabil-
ity in ovarian tumors varies, ranging from 0 to
50%.6–12 In large part, this large variation is due to
the use of different microsatellite markers and
different criteria for defining tumors as microsatel-
lite instability-positive. As serous carcinoma is the
most common epithelial ovarian cancer, most
microsatellite-instability studies have focused on
this subtype. The studies often included endome-
trioid, mucinous, and clear-cell carcinomas and the
results were reported together.6,7,9,13–15 Conse-
quently, the differences in the morphology, etiology,
and clinical behavior between these ovarian epithe-
lial tumors have made interpretation of these
previous studies difficult.

To circumvent these limitations, our studies were
performed using a panel of markers (BAT25, BAT26,
D5S346, and D17S250) to study a homogeneous
group of ovarian endometrioid carcinomas. These
tumors were chosen because of their shared char-
acteristics with endometrial endometrioid carcino-
ma, a type of tumor known to have microsatellite
instability. The goals of this study were to: (1)
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determine the frequency of microsatellite instability
in ovarian endometrioid carcinoma; (2) examine the
loss of expression of the hMLH1 and hMSH2
proteins in both microsatellite instability-positive
and microsatellite stable tumors, and (3) correlate
microsatellite with clinical variables, such as tumor
grade and clinical stage.

Materials and methods

Matched pairs of formalin-fixed, paraffin-embedded
normal and tumor tissue specimens were obtained
from 74 patients. The pathologic characteristics of
each tumor were confirmed by a pathologist (either
JL or WZ). For the tumor with focal serous
carcinoma, only endometrioid components were
dissected and DNAs extracted for further analysis.
The tumor was microdissected from adjacent
normal tissue with an 18-gauge needle under
light microscopy. DNA from each sample was
extracted and analyzed for microsatellite instability
using the panel of four microsatellite markers
recommended by the National Cancer Institute:16,17

BAT25, BAT26, D5S346, and D17S250 using
multiplex polymerase chain reaction. A fifth
marker, D2S123, was also included but not consis-
tently amplified in most of cases and therefore
was not included in the final analysis. Oligonucleo-
tide primers were fluorescent-labeled as previously
described.18,19 Multiplex polymerase chain reaction
was performed in a 15 ml volume containing 40ng
of DNA, 5pmol of fluorescent-labeled primers
(Life Technologies, Gaithersburg, MD, USA),
2.5mM MgCl2, 200 mM dNTPs, and 2U AmpliTaq
Gold DNA polymerase (Applied Biosystems). The
reaction was denatured at 951C for 6min, 541C for
30 s, and 721C for 40 s; and extension at 721C for
10min. The fluorescent-labeled products were ana-
lyzed by capillary electrophoresis on an ABI 3700
DNA Analyzer using GeneScan analysis software
(Applied Biosystems). Tumors in which only 1
marker showed instability were defined as micro-
satellite instability-low. Tumors in which no mar-
kers exhibited microsatellite instability were
defined as microsatellite stable. Loss of heterozyg-
osity was also defined as an identical pattern in one
of two alleles, but complete loss in the second allele
and scored in BAT25, BAT26, D5S346, and
D17S250.

Immunohistochemical staining was carried out by
incubating tissue sections with either a 1 : 30
dilution of purified mouse anti-hMLH1 antibody
(PharMingen International, San Diego, CA, USA) or
a 1 : 100 dilution of mouse monoclonal antibody to
hMSH2 (Ab-2, Oncogene, La Jolla, CA, USA).
Immunoreactive proteins were visualized using
EnVision-horseradish peroxidase kit (Dako, Carpin-
teria, CA, USA) for hMLH1 and LSAB2 horseradish
peroxidase kit (Dako) for hMSH2. Clinical informa-
tion was obtained from pathology reports, patient

charts, or both. Statistical analyses of microsatellite
instability status, loss of heterozygosity, and immuno-
histochemical data were performed using the w2

analysis. A P-value o0.05 was considered to be
statistically significant.

Results

Microsatellite Instability in Ovarian Endometrioid
Carcinomas

Of the 74 tumors, 15 (20%) showed allelic shifts in
two or more loci and were designated microsatellite
instability-high. One representative tumor of micro-
satellite instabilities high is shown in Figure 1. Nine
tumors (12%) demonstrated an allelic shift in only
one locus and were designated microsatellite in-
stability-low. The remaining 50 cases showed no
changes in any of the loci that were designated as
microsatellite stable. We wanted to determine
whether the microsatellite status of ovarian endo-
metrioid carcinomas correlates with clinicopatho-
logic features. Our results showed that the
microsatellite status of ovarian endometrioid carci-
nomas did not correlate with clinical stage of the
disease (Table 1), although high-grade ovarian
endometrioid carcinomas tended to have a micro-
satellite stable phenotype, and the low-grade ovar-
ian endometrioid carcinomas tended to have a
microsatellite instability-high phenotype (Table 1;
P¼ 0.053).

hMLH1 and hMSH2 Protein Expression in Ovarian
Endometrioid Carcinoma

Microsatellite instability is associated with muta-
tions of DNA mismatch repair genes, especially
hMLH1 and hMSH2.2,3,5 To determine expression
levels of the DNAmismatch repair proteins, immuno-
histochemical analysis was performed. hMLH1 and
hMSH2 proteins were present in the majority (89–
100%) of microsatellite stable and microsatellite
instability-low tumors (Table 2). In contrast, loss of
either hMLH1 or hMSH2 expression occurred in a
total of nine (60%) of 15 microsatellite instability-
high tumors. Representative photomicrographs are
shown in Figure 2.

Loss of Heterozygosity in Ovarian Endometrioid
Carcinoma

In all, 74 cases of ovarian endometrioid carcinoma
were analyzed for loss of heterozygosity in markers
D5S346 and D17S250. Loss of heterozygosity oc-
curred in 32 (43%) of 74 ovarian endometrioid
carcinoma, nine of these showed loss of hetero-
zygosity at D5S346, and 26 showed loss of hetero-
zygosity at D17S250. A representative image is
shown in Figure 3. Of these 32 tumors with loss of
heterozygosity, 24 were microsatellite stable, three
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were microsatellite instability-low, and five were
microsatellite-high. Loss of heterozygosity at
D17S250 correlated with high clinical stage
(P¼ 0.097) (Table 3).

Discussion

Our results demonstrate that a significant number
(20%) of ovarian endometrioid carcinoma are
microsatellite instability-high. Analysis of clinical
characteristics of ovarian endometrioid caricnoma
indicated that microsatellite instability-positive tu-
mors tended to be low-grade, whereas tumor with
loss of heterozygosity tended to be a higher grade
and clinical stage. These results suggest that micro-
satellite instability plays an important role in the
pathogenesis of sporadic ovarian endometrioid
carcinoma. Our results further show that 60% of
the microsatellite instability-high tumors have loss
of expression of the DNA mismatch repair gene,
hMLH1 or hMSH2. This indicates that immuno-
histochemical staining for the corresponding DNA
mismatch repair proteins could help identify ovar-
ian endometrioid carcinomas with the microsatellite
instability phenotype. These features are similar to
those observed in microsatellite instability positive
sporadic tumors of the colon and endometrium,
supporting a similar role of microsatellite instability
in the pathogenesis of tumors in these organs.3,20

Most studies of microsatellite instability in ovar-
ian cancer were performed before the use of a
standard panel of microsatellite markers and stan-

Table 2 Expression of hMLH1 and hMSH2 proteins in relation to
microsatellite instability status in 74 ovarian endometrioid
carcinomas

Microsatellite status Absence of hMLH1 Absence of hMSH2

MSI-H (n¼15) 7 (47%) 2 (13%)
MSI-L (n¼9) 1 (11%) 0
MSS (n¼ 50) 0 1 (2%)

Total (n¼74) 9 (12%) 3 (4%)

MSI-H, microsatellite instability-high, at least two markers showed
microsatellite instability; MSI-L, microsatellite instability-low, only
one marker showed microsatellite instability; MSS, microsatellite
stable.

Figure 1 Microsatellite instability analysis using four microsa-
tellite markers, BAT25, BAT26, D5S246, and D17S250 from a
representative tumor with microsatellite instabilities high. For
each marker, the top graph represents normal DNA and the
bottom graph represents tumor DNA.

Table 1 Associations of clinicopathologic variables with micro-
satellite instability

Tumor
characteristics

MSS/MSI-L (%) MSI-H Total w2 P-value

Stage
I/II 31 (67.5%) 9 (22.5%) 40 0.268 0.605
III/IV 28 (82.4%) 6 (17.6%) 34

Grade
Low (I) 10 (62.5%) 6 (37.5%) 16 3.750 0.053
High (II/III) 49 (84.5%) 9 (15.5%)

Total 59 15 74

MSI-H, microsatellite instability-high, at least two markers showed
microsatellite instability; MSI-L, microsatellite instability-low, only
one marker showed microsatellite instability; MSS, microsatellite
stable.
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dardized criteria for determining microsatellite
instability. Some studies classified tumors as micro-
satellite instability if any allelic shift was detected,
whereas the National Cancer Institute recommended
alterations in at least two markers.16,17 This would
explain the higher frequency of microsatellite
instability observed in some of the earlier studies.
Application of the National Cancer Institute criteria
to some of the previous studies was possible and
indicated that microsatellite instability was more
frequent in ovarian endometrioid carcinomas than
in serous ovarian carcinomas.9,11,16 This was con-
sistent with studies of the endometrium, in which
microsatellite instability was also infrequent in
serous carcinomas.21–24

Immunohistochemical staining for hMLH1 and
hMSH2 proteins showed microsatellite instability-
high tumors in 60% of cases. Only one microsatel-
lite instability stable tumor showed loss of hMSH2
expression (2%). These results indicated that im-
munohistochemical analysis for hMLH1 and
hMSH2 was highly specific for detecting microsa-
tellite instability. This is consistent with other
reports demonstrating a correlation between loss of
DNA mismatch repair gene function and the micro-
satellite instability phenotype.2–5 Similarly, other
studies have also shown a more frequent loss of

hMLH1 expression compared with loss of hMSH2
expression.2,3,5,25 Despite the importance of hMLH1
in microsatellite instability, the presence of normal

Figure 3 Analysis of loss of heterozygosity at the following loci:
BAT25, BAT26, D5S246, and D17S250 in a representative tumor.
For each marker, the top graph represents normal DNA and the
bottom graph represents tumor DNA. In this case, the tumor
showed loss of heterozygosity in D17S250 as indicated by an
arrow.

MSS (hMLH1+) MSS (hMSH2+) 

MSI-H (hMLH1+) MSI-H (hMSH-) 

MSI-H (hMLH-) MSI-H (hMSH2+) 

a b
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Figure 2 Immunohistochemical expression of hMLH1 and
hMSH2 proteins in ovarian endometrioid carcinoma. A, C, and
E, stained with anti-hMLH1; B, D, and F, stained with anti-
hMSH2. Immunoreactive proteins were visualized using EnVi-
sion-horseradish peroxidase kit for hMLH1 and LSAB2 horse-
radish peroxidase kit for hMSH2. Magnification is �100.
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hMLH1 expression in 53% of the microsatellite
instability-high tumors in our study suggested the
involvement of other DNA mismatch repair genes as
well, such as hPMS1, hPMS2, hMSH3, and
hMSH6.1 A major mechanism for loss of hMLH1
expression in sporadic colon and endometrial
cancers was hypermethylation of the hMLH1 pro-
moter, resulting in silencing of the hMLH1 gene.26,27

It will be interesting to determine whether this holds
true for ovarian endometrioid carcinoma. Gras et al8

have already begun to address this question; their
studies describe hMLH1 methylation in ovarian
endometrioid carcinoma with microsatellite in-
stability.

We found a high frequency of loss of heterozyg-
osity in ovarian endometrioid carcinoma using the
same markers that we used to detect microsatellite
instability. In most of these cases (81%), loss of
heterozygosity involved the D17S250 marker, a DNA
region corresponding to the long arm of chromo-
some 17 (17q11.2–q12). Loss of heterozygosity in
chromosome 17 has been reported in epithelial
ovarian tumors, including serous, endometrioid,
mucinous, and clear-cell carcinomas.11,28–36 How-
ever, loss of heterozygosity in 17q does not appear to
be unique to ovarian tumors. Indeed, it has also been
described in several other types of cancers, although
it is neither a prominent nor a consistent altera-
tion.20,24,37–40 In general, chromosomal instability in
tumors as assessed by loss of heterozygosity was
associated with advanced-stage disease.11,29 This
was consistent with our results that showed an
association between loss of heterozygosity and late-
stage tumors. Although the pertinent gene is not
known, the prevalence of loss of heterozygosity in
the D17S250 region in ovarian endometrioid carci-
noma suggested that this region may harbor a tumor
suppressor gene involved in tumor progression.

In conclusion, our results indicate that both
microsatellite and loss of heterozygosity in the
D17S250 region may play a significant role in
ovarian endometrioid carcinoma. These two path-
ways do not appear to be mutually exclusive, since
one-third of the microsatellite instability-high tu-
mors in our study also demonstrated loss of
heterozygosity in the D17S250 region. This sug-

gested that microsatellite instability and loss of
heterozygosity are distinct, but not necessarily
independent pathways in the pathogenesis of
ovarian endometrioid carcinoma. In addition, immuno-
histochemical stainings for hMLH1 and hMSH2 are
highly specific in identifying these tumors with a
microsatellite-instability phenotype.
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