
energy of DNA binding to change the helical twist, resulting in an overwinding of the DNA. Changes in helical twist may destabilize histone-DNA ${ }^{23}$ as well as histone-histone interactions ${ }^{24}$, so the ability of the SWI/SNF complex to modulate both DNA structure and topology may be important in SWI/SNF-dependent disruption of nucleosome structure.

[^0]FIG. 4 SWI/SNF introduces positive supercoils into relaxed plasmid DNA in the presence of bacterial topoisomerase I. a, SWI/SNF induces supercoiling. Closed relaxed plasmid DNA (lane 2) was incubated with the SWI/ SNF complex and bacterial topoisomerase I (topo I; 3 units). Molar ratios of SWI/SNF to plasmid are indicated above each set of lanes. A ratio of 20:1 corresponds to 3 nM SWI/SNF. Addition of ATP to a subset of the reactions is indicated. Arrows to the right denote topology standards, lane 1 contains linear plasmid (form III), lane 3 contains supercoiled plasmid (form I) and some nicked circles (comigrate with form II, closed relaxed DNA). The bracket to the right denotes SWI/SNF-induced topoisomers. b, SWI/SNF introduces positive supercoils. Plasmid DNA was supercoiled with SWI/SNF (3 nM) and bacterial topo I as in a. DNA was purified (lane 6) and retreated with either bacterial topo I (3 units; lane 7), calf thymus topo I (3 units; lane 8), or calf thymus topo II (7 units; lane 9). Lanes 1-4 show control reactions in which negatively supercoiled plasmid DNA (lane 1) was incubated with each topoisomerase under conditions identical to those for lanes 7-9. Lane 5 shows the starting relaxed substrate DNA. Reactions that contained calf thymus topo II contained 1 mM ATP.
METHODS. Supercoiling reactions (20μ) contained $1 \times$ supercoiling buffer (20 mM HEPES, $\mathrm{pH} 7.5,7 \mathrm{mM} \mathrm{MgCl} 2,15 \mathrm{mM} \mathrm{KCl}, 0.5 \mathrm{mM}$ DTT, $50 \mu \mathrm{~g} \mathrm{per}$ ml BSA), $50 \mathrm{ng} \mathrm{pJH} 28, \mathrm{SWI} / \mathrm{SNF}$, and topoisomerases where indicated. Reactions were incubated for 45 min at $30^{\circ} \mathrm{C}$, stopped with $80 \mu \mathrm{l} 1 \%$ SDS, 10 mM EDTA, $100 \mu \mathrm{gml}{ }^{-1}$ proteinase $\mathrm{K}, 50 \mu \mathrm{gml}^{-1}$ tRNA, and incubated for 30 min at $37^{\circ} \mathrm{C}$. Samples were extracted with phenol/chloroform, ethanol-precipitated, and electrophoresed on 0.8% agarose gels without ethidium bromide and then Southern-blotted. DNA was purified and electrophoresed in the presence of chloroquine as described ${ }^{27}$. Blots were probed with pJH 28 labelled with [$\alpha{ }^{-32}$ P]dCTP by random priming. Plasmid pJH28 contains SUC2 sequences from $-1,100$ to +14 in plasmid pRS316.

ERRATA

Crystal structure of a G-protein $\boldsymbol{\beta} \gamma$ dimer at 2.1 A resolution

John Sondek, Andrew Bohm, David G. Lambright, Heidi E. Hamm \& Paul B. Sigler

Nature 379, 369-374 (1996)
In this title, a typographical error caused the substitution of a subscripted 'A' for a hyphen in 'G-protein'. The correct title is given here.

Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle

Stefan Rahmstorf

Nature 378, 145-149 (1995)
The shaded areas A and B of Fig. $1 a$ of this Article were lost during printing. The correct figure is shown here.

[^0]: Received 20 September 1995; accepted 12 January 1996

 1. Winston, F. \& Carlson, M. Trends Genet. 8, 387-391 (1992)
 2. Peterson, C. L. \& Tamkun, J. W. Trends biochem. Sci. 20, 143-146 (1995).
 3. Kruger, W. \& Herskowitz, I. Molec. cell. Biol. 11, 4135-4146 (1991).
 4. Hirschhorn, J. N., Brown, S. A., Clark, C. D. \& Winston, F. Genes Dev. 6, 228-2298 (1992).
 5. Kruger, W. et al. Genes Dev. 9, 2770-2779 (1995).
 6. Côté, J., Quinn, J., Workman, J. L. \& Peterson, C. L. Science 265, 53-60 (1990),
 7. Laurent, B. C., Treitel, M. A. \& Carlson, M. Molec. cell. Biol. 10, 5616-5625 (1990).
 8. Peterson, C. L. \& Herskowitz, I. Cell 68, 573-583 (1992).
 9. Grosschedl, R., Giese, K. \& Pagel, J. Trends Genet. 10, 94-100 (1994).
 10. Cairns, B. R., Kim, Y.-J., Sayre, M. H., Laurent, B. C. \& Kornberg, R. D. Proc. natn. Acad. Sci. U.S.A. 91, 1950-1954 (1994)
 11. Treich, I., Cairns, B. R., Santos, T., Brewster, E. \& Carlson, M. Molec. cell. Biol. 15, 4240-4248 (1995).
 12. Van de Wetering, M. \& Clevers, H. EMBO J. 11, 3039-3044 (1992).
 13. Copenhaver, G. P., Putnam, C. D., Denton, M. L. \& Pikaard, C. S. Nucleic Acids Res. 22, 26512657 (1992).
 14. Werner, M. H., Huth, J. R., Gronenborn, A. M. \& Clore, G. M. Cell 81, 705-714 (1995)
 15. Pil, P. M., Chow, C. S. \& Lippard, S. J. Proc. natn. Acad. Sci. U.S.A. 90, 9465-9469 (1993). 16. Putnam, C. D. \& Pikaard, C. S. Molec. cell. Biol. 12, 4970-4980 (1992)
 16. Bianchi, M. E., Beltrame, M. \& Paonessa, G. Science 243, 1056-1059 (1989).
 17. Bruhn, S. L., Pil, P. M., Essigmann, J. M., Housman, D. E. \& Lippard, S. J. Proc. natn. Acad. Sci. U.S.A. 89, 2307-2311 (1992).
 18. Lilley, D. M. J. Nature 357, 282-283 (1992).
 19. Stros, M., Stokrova, J. \& Thomas, J. O. Nucleic Acids Res. 22, 1044-1051 (1994).
 20. Fisher, R. P., Lisowsky, T., Parisi, M. A. \& Clayton, D. A. J. biol. Chem. 267, 3358-3367 (1992).
 21. Diffley, J. F. X. \& Stillman, B. J. biol. Chem. 267, 3368-3374 (1992).
 22. Lee, M.-S. \& Garrard, W. T. Proc. natn. Acad. Sci. U.S.A. 88, 9675-9679 (1991).
 23. Clark, D. J. \& Felsenfeld, G. EMBO J. 10, 387-395 (1991).
 24. Peterson, C. L., Eaton, S. \& Calame, K. Molec. cell. Biol. 8, 4972-4980 (1988).
 25. Bianchi, M. E. EMBO J. 7, 843-849 (1988)
 26. Knab, A. M., Fertala, J. \& Bjornsti, M.-A. J. biol. Chem. 268, 22322-22330 (1993).
