Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines

Abstract

NEURONS contain distinct compartments including dendrites, dendritic spines, axons and synaptic terminals1. The molecular mechanisms that generate and distinguish these compartments, although largely unknown, may involve the small GTPases Rac and Cdc42 (ref. 2), which appear to regulate actin polymerization3. Having shown that perturbations of Racl activity block the growth of axons but not dendrites of Drosophila neurons2, we investigated whether this also applies to mammals by examining transgenic mice expressing constitutively active human Racl in Purkinje cells. We found that these mice were ataxic and had a reduction of Purkinje-cell axon terminals in the deep cerebellar nuclei, whereas the dendritic trees grew to normal height and branched extensively. Unexpectedly, the dendritic spines of Purkinje cells in developing and mature cerebella were much reduced in size but increased in number. These 'mini' spines often form supernumerary synapses. These differential effects of perturbing Racl activity indicate that there may be distinct mechanisms for the elaboration of axons, dendrites and dendritic spines.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Cajal, S. R. Histology of the Nervous System of Man and Vertebrates (Oxford Univ. Press, 1995).

    Google Scholar 

  2. 2

    Luo, L., Liao, Y. J., Jan, L. Y. & Jan, Y. N. Genes Dev. 8, 1787–1802 (1994).

    CAS  Article  Google Scholar 

  3. 3

    Hall, A. A. Rev. Cell Biol. 10, 31–54 (1994).

    CAS  Article  Google Scholar 

  4. 4

    Palay, S. L. & Chan-Palay, V. Cerebellar Cortex: Cytology and Organization (Springer, New York, 1974).

    Google Scholar 

  5. 5

    Ito, M. The Cerebellum and Neural Control (Raven, New York, 1984).

    Google Scholar 

  6. 6

    Oberdick, J. et al. Neuron 10, 1007–1018 (1993).

    CAS  Article  Google Scholar 

  7. 7

    Smeyne, R. J. et al. Molec. cell. Neurosci. 6, 230–251 (1995).

    CAS  Article  Google Scholar 

  8. 8

    Dunham, N. W. & Miya, T. S. J. Am. Pharmac. Assoc. 46, 208–209 (1957).

    CAS  Article  Google Scholar 

  9. 9

    Jande, S. S., Maler, L. & Lawson, D. E. M. Nature 294, 765–767 (1981).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Mignery, G. A., Südhof, T. C., Takei, K. & De Camilli, P. Nature 342, 192–195 (1989).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Jahn, R., Schiebler, R., Ouimet, C. & Greengard, P. Proc. natn. Acad. Sci. U.S.A. 82, 4137–4141 (1985).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Sotelo, C. J. Neurocytol. 19, 737–755 (1990).

    CAS  Article  Google Scholar 

  13. 13

    Dusart, I. & Sotelo, C. J. comp. Neurol. 347, 211–232 (1994).

    CAS  Article  Google Scholar 

  14. 14

    Altman, J. J. comp. Neurol. 145, 399–464 (1972).

    CAS  Article  Google Scholar 

  15. 15

    Berry, M. & Bradley, P. Brain Res. 112, 1–35 (1976).

    CAS  Article  Google Scholar 

  16. 16

    Harris, K. M. & Stevens, J. K. J. Neurosci. 8, 4455–4469 (1988).

    CAS  Article  Google Scholar 

  17. 17

    Vojtek, A. B. & Cooper, J. A. Cell 82, 527–529 (1995).

    CAS  Article  Google Scholar 

  18. 18

    Harris, K. W. & Kater, S. B. A. Rev. Neurosci. 17, 341–371 (1994).

    CAS  Article  Google Scholar 

  19. 19

    Rakic, P. & Sidman, R. L. J. comp. Neurol. 152, 133–162 (1973).

    CAS  Article  Google Scholar 

  20. 20

    Baptista, C. A., Hatten, M. E., Blazeski, R. & Mason, C. A. Neuron 12, 243–260 (1994).

    CAS  Article  Google Scholar 

  21. 21

    Didsbury, J., Weber, R. F., Bokoch, G. M., Evans, T. & Snyderman, R. J. biol. Chem. 264, 16378–16382 (1989).

    CAS  PubMed  Google Scholar 

  22. 22

    Wood, T. L. et al. DNA 7, 585–593 (1988).

    CAS  Article  Google Scholar 

  23. 23

    Moll, J., Sansig, G., Fattori, E. & van der Putten, H. Oncogene 6, 863–866 (1991).

    CAS  PubMed  Google Scholar 

  24. 24

    Hogan, B., Costantini, F. & Lacy, E. Manipulating the Mouse Embryo (Cold Spring Harbor Laboratory, Cold Spring Harbor, 1986).

    Google Scholar 

  25. 25

    Wisden, W. & Morris, B. J. in In Situ Hybridization Protocols for the Brain (eds Widsen, W. & Morris, B. J.) 9–34 (Academic, London, 1994).

    Google Scholar 

  26. 26

    Jones, K. R., Farinas, I., Backus, C. & Reichardt, L. F. Cell 76, 989–999 (1994).

    CAS  Article  Google Scholar 

  27. 27

    Guenet, J.-L., Sotelo, C. & Mariani, J. J. Hered. 74, 105–108 (1983).

    CAS  Article  Google Scholar 

  28. 28

    Roffler-Tarlov, S., Beart, P. M., O'Gorman, S. & Sidman, R. L. Brain Res. 168, 75–95 (1979).

    CAS  Article  Google Scholar 

  29. 29

    Ajima, A., Hensch, T., Kado, R. T. & Ito, M. Neurosci. Res. 12, 281–286 (1991).

    CAS  Article  Google Scholar 

  30. 30

    Fairen, A. & Smith-Fernandez, A. Micros. Res. Tech. 23, 289–305 (1992).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Luo, L., Hensch, T., Ackerman, L. et al. Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines. Nature 379, 837–840 (1996). https://doi.org/10.1038/379837a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing