Abstract
NEURONS contain distinct compartments including dendrites, dendritic spines, axons and synaptic terminals1. The molecular mechanisms that generate and distinguish these compartments, although largely unknown, may involve the small GTPases Rac and Cdc42 (ref. 2), which appear to regulate actin polymerization3. Having shown that perturbations of Racl activity block the growth of axons but not dendrites of Drosophila neurons2, we investigated whether this also applies to mammals by examining transgenic mice expressing constitutively active human Racl in Purkinje cells. We found that these mice were ataxic and had a reduction of Purkinje-cell axon terminals in the deep cerebellar nuclei, whereas the dendritic trees grew to normal height and branched extensively. Unexpectedly, the dendritic spines of Purkinje cells in developing and mature cerebella were much reduced in size but increased in number. These 'mini' spines often form supernumerary synapses. These differential effects of perturbing Racl activity indicate that there may be distinct mechanisms for the elaboration of axons, dendrites and dendritic spines.
Access options
Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.
References
- 1
Cajal, S. R. Histology of the Nervous System of Man and Vertebrates (Oxford Univ. Press, 1995).
- 2
Luo, L., Liao, Y. J., Jan, L. Y. & Jan, Y. N. Genes Dev. 8, 1787–1802 (1994).
- 3
Hall, A. A. Rev. Cell Biol. 10, 31–54 (1994).
- 4
Palay, S. L. & Chan-Palay, V. Cerebellar Cortex: Cytology and Organization (Springer, New York, 1974).
- 5
Ito, M. The Cerebellum and Neural Control (Raven, New York, 1984).
- 6
Oberdick, J. et al. Neuron 10, 1007–1018 (1993).
- 7
Smeyne, R. J. et al. Molec. cell. Neurosci. 6, 230–251 (1995).
- 8
Dunham, N. W. & Miya, T. S. J. Am. Pharmac. Assoc. 46, 208–209 (1957).
- 9
Jande, S. S., Maler, L. & Lawson, D. E. M. Nature 294, 765–767 (1981).
- 10
Mignery, G. A., Südhof, T. C., Takei, K. & De Camilli, P. Nature 342, 192–195 (1989).
- 11
Jahn, R., Schiebler, R., Ouimet, C. & Greengard, P. Proc. natn. Acad. Sci. U.S.A. 82, 4137–4141 (1985).
- 12
Sotelo, C. J. Neurocytol. 19, 737–755 (1990).
- 13
Dusart, I. & Sotelo, C. J. comp. Neurol. 347, 211–232 (1994).
- 14
Altman, J. J. comp. Neurol. 145, 399–464 (1972).
- 15
Berry, M. & Bradley, P. Brain Res. 112, 1–35 (1976).
- 16
Harris, K. M. & Stevens, J. K. J. Neurosci. 8, 4455–4469 (1988).
- 17
Vojtek, A. B. & Cooper, J. A. Cell 82, 527–529 (1995).
- 18
Harris, K. W. & Kater, S. B. A. Rev. Neurosci. 17, 341–371 (1994).
- 19
Rakic, P. & Sidman, R. L. J. comp. Neurol. 152, 133–162 (1973).
- 20
Baptista, C. A., Hatten, M. E., Blazeski, R. & Mason, C. A. Neuron 12, 243–260 (1994).
- 21
Didsbury, J., Weber, R. F., Bokoch, G. M., Evans, T. & Snyderman, R. J. biol. Chem. 264, 16378–16382 (1989).
- 22
Wood, T. L. et al. DNA 7, 585–593 (1988).
- 23
Moll, J., Sansig, G., Fattori, E. & van der Putten, H. Oncogene 6, 863–866 (1991).
- 24
Hogan, B., Costantini, F. & Lacy, E. Manipulating the Mouse Embryo (Cold Spring Harbor Laboratory, Cold Spring Harbor, 1986).
- 25
Wisden, W. & Morris, B. J. in In Situ Hybridization Protocols for the Brain (eds Widsen, W. & Morris, B. J.) 9–34 (Academic, London, 1994).
- 26
Jones, K. R., Farinas, I., Backus, C. & Reichardt, L. F. Cell 76, 989–999 (1994).
- 27
Guenet, J.-L., Sotelo, C. & Mariani, J. J. Hered. 74, 105–108 (1983).
- 28
Roffler-Tarlov, S., Beart, P. M., O'Gorman, S. & Sidman, R. L. Brain Res. 168, 75–95 (1979).
- 29
Ajima, A., Hensch, T., Kado, R. T. & Ito, M. Neurosci. Res. 12, 281–286 (1991).
- 30
Fairen, A. & Smith-Fernandez, A. Micros. Res. Tech. 23, 289–305 (1992).
Author information
Affiliations
Rights and permissions
About this article
Cite this article
Luo, L., Hensch, T., Ackerman, L. et al. Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines. Nature 379, 837–840 (1996). https://doi.org/10.1038/379837a0
Received:
Accepted:
Issue Date:
Further reading
-
AUTS2 Governs Cerebellar Development, Purkinje Cell Maturation, Motor Function and Social Communication
iScience (2020)
-
The Accumulation of Tau in Postsynaptic Structures: A Common Feature in Multiple Neurodegenerative Diseases?
The Neuroscientist (2020)
-
Dopamine Axon Targeting in the Nucleus Accumbens in Adolescence Requires Netrin-1
Frontiers in Cell and Developmental Biology (2020)
-
Grape-Derived Polyphenols Ameliorate Stress-Induced Depression by Regulating Synaptic Plasticity
Journal of Agricultural and Food Chemistry (2020)
-
Physiopathological Bases of the Disease Caused by HACE1 Mutations: Alterations in Autophagy, Mitophagy and Oxidative Stress Response
Journal of Clinical Medicine (2020)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.