Abstract
Flowering plants exhibit two types of inflorescence architecture: determinate and indeterminate. The centroradialis mutation causes the normally indeterminate inflorescence of Antirrhinum to terminate in a flower. We show that centroradialis is expressed in the inflorescence apex a few days after floral induction, and interacts with the floral-meristem-identity gene floricaula to regulate flower position and morphology. The protein CEN is similar to animal proteins that associate with lipids and GTP-binding proteins. We propose a model for how different inflorescence structures may arise through the action and evolution of centroradialis.
Your institute does not have access to this article
Relevant articles
Open Access articles citing this article.
-
In silico analyses of maleidride biosynthetic gene clusters
Fungal Biology and Biotechnology Open Access 17 February 2022
-
A novel locus (Bnsdt2) in a TFL1 homologue sustaining determinate growth in Brassica napus
BMC Plant Biology Open Access 03 December 2021
-
Genome-wide characterization of PEBP family genes in nine Rosaceae tree species and their expression analysis in P. mume
BMC Ecology and Evolution Open Access 23 February 2021
Access options
Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.
References
Weberling, F. Morphology of Flowers and Inflorescences (Cambridge Univ. Press, 1989).
Coen, E. A. Rev. Pl. Physiol. Pl. molec. Biol. 42, 241–279 (1991).
Weigel, D. & Nilsson, O. Nature 377, 495–550 (1995).
Mandel, M. A. & Yanofsky, M. F. Nature 377, 522–524 (1995).
Coen, E. S. & Nugent, J. M. Development (suppl.) 107–116 (1994).
Stebbins, G. L. Flowering Plants, Evolution above the Species Level (Harvard Univ. Press, MA, 1974).
Kuckuck, H. & Schick, R. Z. indukt. Abstanim. -u. Vereblehre 56, 51–83 (1930).
Stubbe, H. Genetik und Zytologie von Antirrhinum L. sect Antirrhinum (VEB Gustav Frischer, Jena, 1966).
Coen, E. S. et al. Cell 63, 1311–1322 (1990).
Huijser, P. et al. EMBO J. 11, 1239–1250 (1992).
Carpenter, R. et al. Pl. Cell 7, 2001–2011 (1995).
Carpenter, R. & Coen, E. S. Genes Dev. 4, 1483–1493 (1990).
Coen, E. S. & Meyerowitz, E. M. Nature 353, 31–37 (1991).
Keeble, F., Pellew, C. & Jones, W. N. New Phytol 9, 68–77 (1910).
Shannon, S. & Meeks-Wagner, D. R. Pl. Cell 3, 877–892 (1991).
Alvarez, J., Guli, C. L., Yu, X.-H. & Smyth, D. R. Pl J. 2, 103–116 (1992).
Grandy, D. K. et al. Molec. cell Endocr. 4, 1370–1376 (1990).
Bucquoy, S., Jolles, P. & Schoentgen, F. Eur. J. Biochem 225, 1203–1210 (1994).
Schwarz-Sommer, Z. et al. EMBO, J. 11, 251–263 (1992).
Bradley, D., Carpenter, R., Sommer, H., Hartley, N. & Coen, E. Cell 72, 85–95 (1993).
Coen, E. S., Robbins, T. P., Almeida, J., Hudson, A. & Carpenter, R. in Mobile DNA (eds Berg, D. E. & Howe, M. M.) 413–416 (American Society for Microbiology, Washington DC, 1989).
Jameson, B. & Wolf, H. Comput. Appl. Biosci. 4, 181–186 (1988).
Pikielny, C. W., Hasan, G., Rouyer, F. & Rosbash, M. Neuron 12, 35–49 (1994).
Lobos, E. et al. Molec. Biochem. Parasitol. 39, 135–146 (1990).
Tripp, M. L., Bouchard, R. A. & Pinon, R. Molec. Microbiol. 3, 1319–1327 (1989).
Robinson, L. C. & Tatchell, K. Molec. gen. Genet. 230, 241–250 (1991).
Fobert, P. R., Coen, E. S., Murphy, G. J. P. & Doonan, J. H. EMBO J. 13, 616–624 (1994).
Williams, M. H. & Green, P. B. Protoplasma 147, 77–79 (1988).
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. J. molec. Biol. 215, 403–410 (1990).
Luo, D., Coen, E. S., Doyle, S. & Carpenter, R. Pl. J. 1, 59–69 (1991).
Simon, R., Carpenter, R., Doyle, S. & Coen, E. Cell 78, 99–107 (1994).
Frohman, M. A., Dush, M. K. & Martin, G. R. Proc. natn. Acad. Sci. U.S.A. 85, 8998–9002 (1988).
Bradley, D., Vincent, C., Carpenter, R. & Coen, E. Development (in the press).
Hammer, K., Knüpffer, S. & Knüffer, H. Kulturpflanze 38, 91–117 (1990).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Bradley, D., Carpenter, R., Copsey, L. et al. Control of inflorescence architecture in Antirrhinum. Nature 379, 791–797 (1996). https://doi.org/10.1038/379791a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/379791a0
Further reading
-
In silico analyses of maleidride biosynthetic gene clusters
Fungal Biology and Biotechnology (2022)
-
Fine mapping and analysis of candidate genes for qFT7.1, a major quantitative trait locus controlling flowering time in Brassica rapa L
Theoretical and Applied Genetics (2022)
-
CRISPR gene editing of major domestication traits accelerating breeding for Solanaceae crops improvement
Plant Molecular Biology (2022)
-
CiTFL1 and CiWUS Expression Provides Clues to the Mechanism of Flower Number Regulation in the Lateral Cincinni of Canna indica, a Zingiberales Species with Variable Inflorescence Architecture
Journal of Plant Growth Regulation (2022)
-
A novel locus (Bnsdt2) in a TFL1 homologue sustaining determinate growth in Brassica napus
BMC Plant Biology (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.