Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Control of inflorescence architecture in Antirrhinum

Abstract

Flowering plants exhibit two types of inflorescence architecture: determinate and indeterminate. The centroradialis mutation causes the normally indeterminate inflorescence of Antirrhinum to terminate in a flower. We show that centroradialis is expressed in the inflorescence apex a few days after floral induction, and interacts with the floral-meristem-identity gene floricaula to regulate flower position and morphology. The protein CEN is similar to animal proteins that associate with lipids and GTP-binding proteins. We propose a model for how different inflorescence structures may arise through the action and evolution of centroradialis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Weberling, F. Morphology of Flowers and Inflorescences (Cambridge Univ. Press, 1989).

    Google Scholar 

  2. 2

    Coen, E. A. Rev. Pl. Physiol. Pl. molec. Biol. 42, 241–279 (1991).

    Article  Google Scholar 

  3. 3

    Weigel, D. & Nilsson, O. Nature 377, 495–550 (1995).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Mandel, M. A. & Yanofsky, M. F. Nature 377, 522–524 (1995).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Coen, E. S. & Nugent, J. M. Development (suppl.) 107–116 (1994).

  6. 6

    Stebbins, G. L. Flowering Plants, Evolution above the Species Level (Harvard Univ. Press, MA, 1974).

    Book  Google Scholar 

  7. 7

    Kuckuck, H. & Schick, R. Z. indukt. Abstanim. -u. Vereblehre 56, 51–83 (1930).

    Google Scholar 

  8. 8

    Stubbe, H. Genetik und Zytologie von Antirrhinum L. sect Antirrhinum (VEB Gustav Frischer, Jena, 1966).

    Google Scholar 

  9. 9

    Coen, E. S. et al. Cell 63, 1311–1322 (1990).

    CAS  Article  Google Scholar 

  10. 10

    Huijser, P. et al. EMBO J. 11, 1239–1250 (1992).

    CAS  Article  Google Scholar 

  11. 11

    Carpenter, R. et al. Pl. Cell 7, 2001–2011 (1995).

    CAS  Article  Google Scholar 

  12. 12

    Carpenter, R. & Coen, E. S. Genes Dev. 4, 1483–1493 (1990).

    CAS  Article  Google Scholar 

  13. 13

    Coen, E. S. & Meyerowitz, E. M. Nature 353, 31–37 (1991).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Keeble, F., Pellew, C. & Jones, W. N. New Phytol 9, 68–77 (1910).

    Article  Google Scholar 

  15. 15

    Shannon, S. & Meeks-Wagner, D. R. Pl. Cell 3, 877–892 (1991).

    CAS  Article  Google Scholar 

  16. 16

    Alvarez, J., Guli, C. L., Yu, X.-H. & Smyth, D. R. Pl J. 2, 103–116 (1992).

    Article  Google Scholar 

  17. 17

    Grandy, D. K. et al. Molec. cell Endocr. 4, 1370–1376 (1990).

    CAS  Article  Google Scholar 

  18. 18

    Bucquoy, S., Jolles, P. & Schoentgen, F. Eur. J. Biochem 225, 1203–1210 (1994).

    CAS  Article  Google Scholar 

  19. 19

    Schwarz-Sommer, Z. et al. EMBO, J. 11, 251–263 (1992).

    CAS  Article  Google Scholar 

  20. 20

    Bradley, D., Carpenter, R., Sommer, H., Hartley, N. & Coen, E. Cell 72, 85–95 (1993).

    CAS  Article  Google Scholar 

  21. 21

    Coen, E. S., Robbins, T. P., Almeida, J., Hudson, A. & Carpenter, R. in Mobile DNA (eds Berg, D. E. & Howe, M. M.) 413–416 (American Society for Microbiology, Washington DC, 1989).

    Google Scholar 

  22. 22

    Jameson, B. & Wolf, H. Comput. Appl. Biosci. 4, 181–186 (1988).

    CAS  PubMed  Google Scholar 

  23. 23

    Pikielny, C. W., Hasan, G., Rouyer, F. & Rosbash, M. Neuron 12, 35–49 (1994).

    CAS  Article  Google Scholar 

  24. 24

    Lobos, E. et al. Molec. Biochem. Parasitol. 39, 135–146 (1990).

    CAS  Article  Google Scholar 

  25. 25

    Tripp, M. L., Bouchard, R. A. & Pinon, R. Molec. Microbiol. 3, 1319–1327 (1989).

    CAS  Article  Google Scholar 

  26. 26

    Robinson, L. C. & Tatchell, K. Molec. gen. Genet. 230, 241–250 (1991).

    CAS  Article  Google Scholar 

  27. 27

    Fobert, P. R., Coen, E. S., Murphy, G. J. P. & Doonan, J. H. EMBO J. 13, 616–624 (1994).

    CAS  Article  Google Scholar 

  28. 28

    Williams, M. H. & Green, P. B. Protoplasma 147, 77–79 (1988).

    Article  Google Scholar 

  29. 29

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. J. molec. Biol. 215, 403–410 (1990).

    CAS  Article  Google Scholar 

  30. 30

    Luo, D., Coen, E. S., Doyle, S. & Carpenter, R. Pl. J. 1, 59–69 (1991).

    CAS  Article  Google Scholar 

  31. 31

    Simon, R., Carpenter, R., Doyle, S. & Coen, E. Cell 78, 99–107 (1994).

    CAS  Article  Google Scholar 

  32. 32

    Frohman, M. A., Dush, M. K. & Martin, G. R. Proc. natn. Acad. Sci. U.S.A. 85, 8998–9002 (1988).

    ADS  CAS  Article  Google Scholar 

  33. 33

    Bradley, D., Vincent, C., Carpenter, R. & Coen, E. Development (in the press).

  34. 34

    Hammer, K., Knüpffer, S. & Knüffer, H. Kulturpflanze 38, 91–117 (1990).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bradley, D., Carpenter, R., Copsey, L. et al. Control of inflorescence architecture in Antirrhinum. Nature 379, 791–797 (1996). https://doi.org/10.1038/379791a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing