Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Disruption of the nuclear hormone receptor RORα in staggerer mice

A Correction to this article was published on 23 May 1996


HOMOZYGOUS staggerer (sg) mice show a characteristic severe cerebellar ataxia due to a cell-autonomous defect in the development of Purkinje cells1,2. These cells show immature morphology, synaptic arrangement, biochemical properties and gene expression, and are reduced in numbers3–12. In addition, sg heterozygotes show accelerated dendritic atrophy and cell loss13, suggesting that sg has a role in mature Purkinje cells. Effects of this mutation on cerebellar development have been studied for 25 years, but its molecular basis has remained unknown. We have genetically mapped staggerer to an interval of 160 kilobases on mouse chromosome 9 which was found to contain the gene encoding RORα, a member of the nuclear hormone-receptor superfamily. Staggerer mice were found to carry a deletion within the RORα gene that prevents translation of the ligand-binding homology domain. We propose a model based on these results, in which RORα interacts with the thyroid hormone signalling pathway to induce Purkinje-cell maturation.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout


  1. Sidman, R. L., Lane, P. W. & Dickie, M. M. Science 137, 610–612 (1962).

    Article  ADS  CAS  Google Scholar 

  2. Herrup, K. & Mullen, R. J. Brain Res. 178, 443–457 (1979).

    Article  CAS  Google Scholar 

  3. Sotelo, C. & Changeux, J.-P. Brain Res. 67, 519–526 (1974).

    Article  CAS  Google Scholar 

  4. Sotelo, C. Adv. Neurol. 12, 335–351 (1975).

    CAS  PubMed  Google Scholar 

  5. Crepel, F., Delhaye-Bouchaud, N., Guastavino, J. M. & Sampaio, I. Nature 283, 483–484 (1980).

    Article  ADS  CAS  Google Scholar 

  6. Landis, D. M. & Sidman, R. L. J. comp. Neurol. 179, 831–863 (1978).

    Article  CAS  Google Scholar 

  7. Mariani, J. & Changeux, J.-P. J. Neurobiol. 11, 41–50 (1980).

    Article  CAS  Google Scholar 

  8. Hatten, M. E. & Messer, A. Nature 276, 504–506 (1978).

    Article  ADS  CAS  Google Scholar 

  9. Trenkner, E. Nature 277, 566–567 (1979).

    Article  ADS  CAS  Google Scholar 

  10. Edelman, G. M. & Chuong, C. M. Proc. natn. Acad. Sci. U.S.A. 79, 7036–7040 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Herrup. K. & Müllen, R. J. Brain Res. 227, 475–485 (1981).

    Article  CAS  Google Scholar 

  12. Herrup. K. Brain Res. 313, 267–274 (1983).

    Article  CAS  Google Scholar 

  13. Zanjani, H. S., Mariani, J., Delhaye-Bouchaud, N. & Herrup, K. Brain Res. Dev. 67, 153–160 (1992).

    Article  CAS  Google Scholar 

  14. Dietrich, W. F. et al. Nature Genet. 7, 220–245 (1994).

    Article  CAS  Google Scholar 

  15. Kusumi, K., Smith, J. S., Segre J. A., Koos, D. S. & Lander, E. S. Mamm. Genome 4, 391–392 (1993).

    Article  CAS  Google Scholar 

  16. Becker-André, M., André, E. & DeLamarter, J. F. Biochem. Biophys. Res. Commun. 194, 1371–1379 (1993).

    Article  Google Scholar 

  17. Giguere, V. et al. Genes Dev. 8, 538–553 (1994).

    Article  CAS  Google Scholar 

  18. Giguere, V., McBroom, L. D. & Flock, G. Molec. cell. Biol. 15, 2517–2526 (1995).

    Article  CAS  Google Scholar 

  19. McBroom, L. D., Flock, G. & Giguere, V. Molec. cell. Biol. 15, 796–808 (1995).

    Article  CAS  Google Scholar 

  20. Herrup, K. & Mullen. R. J. Brain Res. 172, 1–12 (1979).

    Article  CAS  Google Scholar 

  21. Hatten, M. E. & Heintz, N. A. Rev. Neurosci. 18, 385–408 (1995).

    Article  CAS  Google Scholar 

  22. Trenkner, E. & Hoffmann, M. K. J. Neurosci. 6, 1733–1737 (1986).

    Article  CAS  Google Scholar 

  23. Legrand, J. Trends Neurosci. 2, 234–236 (1979).

    Article  Google Scholar 

  24. Messer, A. J. Neurochem. 51, 888–891 (1988).

    Article  CAS  Google Scholar 

  25. Zou, L., Hagen, S. G., Strait, K. A. & Oppenheimer, J. H. J. biol. Chem. 269, 13346–13352 (1994).

    CAS  PubMed  Google Scholar 

  26. Tini, M., Tsui, L. C. & Giguere, V. Molec. Endocr. 8, 1494–1506 (1994).

    CAS  PubMed  Google Scholar 

  27. Forman, B. M. et al. Molec. Endocr. 8, 1253–1261 (1994).

    CAS  PubMed  Google Scholar 

  28. Tini, M., Fraser, R. A. & Giguere, V. J. biol. Cnem. 270, 20156–20161 (1995).

    Article  CAS  Google Scholar 

  29. Forman, B. M., Umesono, K., Chen, J. & Evans, R. M. Cell 81, 541–550 (1995).

    Article  CAS  Google Scholar 

  30. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning; A Laboratory Manual (Cold SpringHarbor Laboratory Press, Cold Spring Harbor, New York, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hamilton, B., Frankel, W., Kerrebrock, A. et al. Disruption of the nuclear hormone receptor RORα in staggerer mice. Nature 379, 736–739 (1996).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing