Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Resetting of the circadian clock by a conditioned stimulus

Abstract

ENVIRONMENTAL light is the dominant temporal cue for the entrainment of circadian rhythms. In mammals, light entrains circadian rhythms by daily resetting a pacemaker located in the hypothalamic suprachiasmatic nucleus (SCN)1,2. Although it is widely held that phase resetting by light involves cellular elements within the SCN that are uniquely responsive to photic cues1,3, we now report that non-photic cues that reliably precede the onset of light can, through associative learning, come to activate these elements. In rats, a neutral non-photic stimulus paired with light in pavlovian conditioning trials was capable of eliciting cellular and behavioural effects characteristic of phase-dependent resetting of the pacemaker by light, the expression of the transcription factor Fos in SCN cells, and phase shifts in free-running activity and temperature rhythms4–7. Thus an associative learning process, pavlovian conditioning, provides a means whereby environmental cues that predict light onset can come to mimic the effect of light on the SCN pacemaker and thereby bring about entrainment of circadian rhythms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Morin, L. P. Brain Res. Rev. 67, 102–127 (1994).

    Article  Google Scholar 

  2. Pittendridge, C. S. in Handbook of Behavioral Neurobiology Biological Rhythms (ed. Ashchoff, J.) 95–124 (Plenum, New York, 1981).

    Google Scholar 

  3. Takahashi, J. S. A. Rev. Neurosci. 18, 531–553 (1995).

    Article  CAS  Google Scholar 

  4. Komhouser, J. M., Nelson, D. E., Mayo, K. E. & Takahashi, J. S. Neuron 5, 127–134 (1990).

    Article  Google Scholar 

  5. Rusak, B., Robertson, H. A., Wisden, W. & Hunt, S. P. Science 248, 1237–1240 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Schwartz, W. J., Takeuchi, J., Shannon, W., Davis, E. M. & Aronin, N. Neuroscience 58, 573–583 (1994).

    Article  CAS  Google Scholar 

  7. Amir, S. & Robinson, B. Neuroscience 69, 1005–1011 (1995).

    Article  CAS  Google Scholar 

  8. Moore, R. Y. & Lenn, N. J. J. comp. Neurol. 146, 1–14 (1972).

    Article  CAS  Google Scholar 

  9. Johnson, R. F., Moore, R. Y. & Morin, L. P. Brain Res. 462, 301–312 (1988).

    Article  CAS  Google Scholar 

  10. Card, J. P. & Moore, R. Y. J. comp. Neurol. 284, 135–147 (1989).

    Article  CAS  Google Scholar 

  11. Moore, R. Y. & Card, J. P. J. comp. Neurol. 344, 403–430 (1994).

    Article  CAS  Google Scholar 

  12. Rusak, B., Meijer, J. H. & Harrington, M. E. Brain Res. 493, 283–291 (1989).

    Article  CAS  Google Scholar 

  13. Harrington, M. E. & Rusak, B. J. J. biol. Rhythms 1, 309–325 (1986).

    Article  CAS  Google Scholar 

  14. Picard, G. E. Neurosci. Lett. 55, 211–217 (1985).

    Article  Google Scholar 

  15. Hickey, T. L. & Spear, P. D. Expl Brain Res. 24, 523–529 (1976).

    Article  CAS  Google Scholar 

  16. Shinohara, K., Tominga, K., Fukuhara, C., Otori, Y. & Inouye, S.-I. T. Neuroscience 56, 813–822 (1993).

    Article  CAS  Google Scholar 

  17. Harrington, M. E., Nance, D. M. & Rusak, B. Brain Res. 410, 275–282 (1987).

    Article  CAS  Google Scholar 

  18. Card, J. P. & Moore, R. Y. J. comp. Neurol. 206, 390–396 (1982).

    Article  CAS  Google Scholar 

  19. Edelstein, K. & Amir, S. Brain Res. 600, 254–258 (1995).

    Article  Google Scholar 

  20. Davidowa, H. & Albrecht, D. Behavl Brain Res. 50, 127–133 (1992).

    Article  CAS  Google Scholar 

  21. Moga, M. M., Weis, R. P. & Moore, R. Y. J. comp. Neurol. 359, 221–238 (1995).

    Article  CAS  Google Scholar 

  22. Mrosovsky, N. J. comp. Physiol. A 162, 35–46 (1988).

    Article  CAS  Google Scholar 

  23. Wickland, C. R. & Turek, F. W. Am. J. Physiol. 261, R1109–R1117 (1991).

    CAS  PubMed  Google Scholar 

  24. Van Reeth, O. & Turek, F. W. Nature 339, 49–51 (1989).

    Article  ADS  CAS  Google Scholar 

  25. Zhang, Y., Van Reeth, O., Zee, P. C., Takahashi, J. S. & Turek, F. W. Neurosci. Lett. 164, 203–208 (1993).

    Article  CAS  Google Scholar 

  26. Janik, D. & Mrosovsky, N. NeuroReport 3, 575–578 (1992).

    Article  CAS  Google Scholar 

  27. Mead, S. et al. J. Neurosci. 12, 2516–2522 (1992).

    Article  CAS  Google Scholar 

  28. Cutrera, R. A., Kalsbeek, A. & Pévet, P. Brain Res. 602, 14–20 (1993).

    Article  CAS  Google Scholar 

  29. Daan, S. & Pittendrigh, C. S. J. comp. Physiol. 106, 253–266 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amir, S., Stewart, J. Resetting of the circadian clock by a conditioned stimulus. Nature 379, 542–545 (1996). https://doi.org/10.1038/379542a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/379542a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing