Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Diet and snake venom evolution

Abstract

VENOM composition within snake species can show considerable geographical variation1, an important consideration because bites by conspecific populations may differ in symptomatology and require different treatments2–5. The underlying causes of this phenomenon have never been explained. Here we present evidence that the variation in the venom of the pitviper Calloselasma rhodostoma (Serpentes: Viperidae) is closely associated with its diet. We also evaluated other possible causes of geographic variation in venom using partial Mantel tests6–10 and independent contrasts11, but rejected both contemporary gene flow (estimated from geographical proximity) and the phylogenetic relationships (assessed by analysis of mitochondrial DNA) among populations as important influences upon venom evolution. As the primary function of viperid venom is to immobilize and digest prey12–14 and prey animals vary in their susceptibility to venom15,16, we suggest that geographical variation in venom composition reflects natural selection for feeding on local prey.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Chippaux, J.-P., Williams, V. & White, J. Toxicon 29, 1279–1303 (1991).

    CAS  Article  Google Scholar 

  2. Barrio, A. & Brazil, O. V. Acta physiol. Lat. Am. 1, 291–308 (1951).

    CAS  PubMed  Google Scholar 

  3. Warrell, D. A. in Natural Toxins: Animal, Plant and Microbial. (ed. Harris, J. B.) 25–45 (Clarendon, Oxford, 1986).

    Google Scholar 

  4. Jayanthi, G. P. & Veerabasappa Gowda, T. Toxicon 26, 257–264 (1988).

    CAS  Article  Google Scholar 

  5. Wüster, W., Otsuka, S., Malhotra, A. & Thorpe, R. S. Biol. J. Linn. Soc. 47, 97–113 (1992).

    Article  Google Scholar 

  6. Brown, R. P., Thorpe, R. S. & Baez, M. Nature 352, 60–62 (1991).

    ADS  Article  Google Scholar 

  7. Thorpe, R. S. & Baez, M. Biol. J. Linn. Soc. 48, 75–87 (1993).

    Article  Google Scholar 

  8. Thorpe, R. S., et al. in Phylogenetics and Ecology (eds. Eggleton, P. & Vane-Wright, R.) 189–206 (Linnean Soc. Symp. Ser. No. 17, Academic, London 1994).

    Google Scholar 

  9. Castellano, S., Malhotra, A. & Thorpe, R. S. Biol. J. Linn. Soc. 52, 365–375 (1994).

    Article  Google Scholar 

  10. Thorpe, R. S. Malhotra, A., Black, H., Daltry, J. C. & Wüster, W. Phil. Trans. R. Soc. Lond. B349, 61–68 (1995).

    Article  Google Scholar 

  11. Felsenstein, J. Am. Nat. 125, 1–15 (1985).

    Article  Google Scholar 

  12. Thomas, R. G. & Pough, F. H. Toxicon 17, 221–228 (1979).

    CAS  Article  Google Scholar 

  13. Mackessy, S. P. Copeia 1988, 92–101 (1988).

    Article  Google Scholar 

  14. Hayes, W. K. Toxicon 29, 867–875 (1991).

    CAS  Article  Google Scholar 

  15. Minton, S. A. & Minton, S. R. Venomous Reptiles (Scribners, New York, 1969).

    Google Scholar 

  16. Elliott, W. B. in Biology of the Reptilia, Physiology B vol. 8 (eds Gans, C. & Gans, K. A.) 163–435 (Academic, London, 1978).

    Google Scholar 

  17. Tan, N.-H. Tropical Biomedicine 8, 91–103 (1991).

    Google Scholar 

  18. Tu, A. T. & Adams, B. L. Nature 217, 761–762 (1968).

    ADS  Article  Google Scholar 

  19. Foote, R. & MacMahon, J. A. Comp. Biochem. Physiol. 57B, 235–241 (1977).

    Google Scholar 

  20. Chen, Y., Wu, X. & Zhao, E. Toxicon 22, 53–61 (1984).

    CAS  Article  Google Scholar 

  21. Pough, F. H. & Groves, J. D. Am. Zool. 23, 443–454 (1983).

    Article  Google Scholar 

  22. Boche, J., Chippaux, J. P. & Courtois, B. Bull. Soc. Path. Exot. 74, 356–366 (1981).

    CAS  PubMed  Google Scholar 

  23. Gregory-Dwyer, V. M., Egan, N. B., Bianchi Bosisio, A., Righetti, P. G. & Russell, F. E. Toxicon 24, 995–1000 (1986).

    CAS  Article  Google Scholar 

  24. Tu, A. T. & Ganthavorn, S. J. Herpet. 12, 105–107 (1978).

    Article  Google Scholar 

  25. Kocher, T. D. et al. Proc. natn. Acad. Sci. U.S.A. 86, 6196–6200 (1989).

    ADS  CAS  Article  Google Scholar 

  26. Moritz, C., Schneider, C. J. & Wake, D. B. Syst. Biol. 41, 273–291 (1992).

    Article  Google Scholar 

  27. Felsenstein, J. PHYLIP version 3.3 (Univ. Washington, Seattle, 1990).

    Google Scholar 

  28. McElroy, D., Moran, P., Bermingham, E. & Kornfield, I. Restriction Enzyme Analysis Package version 4.0 (Univ. Maine, Massachusetts, 1992).

    Google Scholar 

  29. Rice, W. R. Evolution 43, 223–225 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Daltry, J., Wüster, W. & Thorpe, R. Diet and snake venom evolution. Nature 379, 537–540 (1996). https://doi.org/10.1038/379537a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/379537a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing