Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A mammalian gene with introns instead of exons generating stable RNA products

Abstract

THE nucleoli of eukaryotic cells are the sites of ribosomal RNA transcription and processing and of ribosomal subunit assembly. They contain multiple small nucleolar RNAs (snoRNAs), several of which are essential for rRNA maturation1. The U3, U8 and U13 snoRNA genes are transcribed independently, whereas U14–U24, as well as E3, are located within introns of protein-coding genes, most of whose functions are linked to translation. These snoRNAs are co-transcribed with their host pre-mRNAs and released by processing from excised introns1,2. Here we show that, in addition to U22, seven novel fibrillarin-associated snoRNAs, named U25–U31, are encoded within different introns of the unusually compact mammalian U22 host gene (UHG). All seven RNAs exhibit extensive (12–15 nucleotides) complementarity to different segments of the mature rRNAs, followed by a C/AUGA ('U-turn') sequence. The spliced UHG RNA, although it is associated with polysomes, has little potential for protein coding, is short-lived, and is poorly conserved between human and mouse. Thus, the introns rather than the exons specify the functional products of UHG.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Maxwell, E. S. & Fournier, M. J. A. Rev. Biochem. 35, 899–934 (1995).

    Google Scholar 

  2. Sollner-Webb, B. Cell 75, 403–405 (1993).

    Article  CAS  Google Scholar 

  3. Tycowski, K. T., Shu, M.-D. & Steitz, J. A. Science 266, 1558–1561 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Mager, W. H. Biochem. biophys. Acta 949, 1–15 (1988).

    ADS  CAS  PubMed  Google Scholar 

  5. Greenberg, M. & Belasco, J. G. in Control of Messenger RNA Stability (eds Belasco J. & Brawerman G.) 199–218 (Academic, San Diego, 1993).

    Book  Google Scholar 

  6. Maquat, L. E. RNA 1, 453–465 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Bachellerie, J.-P. et al. Trends biochem. Sci. 20, 261–264 (1995).

    Article  CAS  Google Scholar 

  8. Pellizzoni, L., Crosio, C., Campioni, N., Loreni, F. & Pierandrei-Amaldi, P. Nucleic Acids Res. 22, 4607–4613 (1994).

    Article  CAS  Google Scholar 

  9. Rimoldi, O. J., Raghu, B., Nag, M. K. & Eliceiri, G. L. Molec. cell. Biol. 13, 4382–4390 (1993).

    Article  CAS  Google Scholar 

  10. Pley, H. W., Flaherty, K. M. & McKay, D. B. Nature 372, 68–74 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Scott, W. G., Finch, J. T. & Klug, A. Cell 81, 991–1002 (1995).

    Article  CAS  Google Scholar 

  12. Quigley, G. J. & Rich, A. Science 194, 796–806 (1976).

    Article  ADS  CAS  Google Scholar 

  13. Mattick, J. S. Curr. Opin. genet. Dev. 4, 823–831 (1994).

    Article  CAS  Google Scholar 

  14. Geyer, P. K., Meyuhas, O., Perry, R. P. & Johnson, L. F. Molec. cell. Biol. 2, 685–693 (1982).

    Article  CAS  Google Scholar 

  15. Nucifora, G., Begy, C. R., Erickson, P., Drabkin, H. A. & Rowley, J. D. Proc. natn. Acad. Sci. U.S.A. 90, 7784–7788 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Tyc, K. & Steitz, J. A. EMBO J. 8, 3113–3119 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tycowski, K., Shu, MD. & Steitz, J. A mammalian gene with introns instead of exons generating stable RNA products. Nature 379, 464–466 (1996). https://doi.org/10.1038/379464a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/379464a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing