Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Experimental simulations of the photodecomposition of carbonates and sulphates on Mars

Abstract

THERE is indirect spectroscopic evidence for the presence of sulphates and carbonates on the martian surface1–5, and such minerals are also found in SNC meteorites6, which are thought to be of martian origin. But although carbonates are expected to be abundant in the martian regolith7–9, attempts to detect them directly have been unsuccessful10,11. Here we report laboratory studies of the decomposition of calcium carbonate and magnesium sulphate under ultraviolet irradiation, which mimic the conditions under which photodecomposition of surface minerals by solar ultraviolet light might occur on Mars. We find that, even for a low abundance6 of carbonate minerals in the martian regolith, the rate of CO2 release due to photodecomposition is higher than the rate of CO2 loss from the atmosphere by solar-wind-induced sputtering processes12–15, making this process a potential net source of atmospheric CO2 over time. SO2 is also released from the sulphate, albeit more slowly. The rate of carbonate degradation is high enough to explain the apparent absence of these compounds at the martian surface.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pollack, J. B. et al. J. geophys. Res. 95, 14595–14627 (1990).

    Article  ADS  Google Scholar 

  2. Calvin, W. M., King, T. V. V. & Clark, R. N. J. geophys. Res. 99, 14659–14675 (1994).

    Article  ADS  CAS  Google Scholar 

  3. Bell, J. F., Pollack, J. B., Geballe, T. R., Cruikshank, D. R. & Freedman, R. Icarus 111, 106–123 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Blaney, D. L. & McCord, T. B. J. geophys. Res. 94, 10159–10166 (1989).

    Article  ADS  Google Scholar 

  5. Blaney, D. L. & McCord, T. B. J. geophys. Res. 100, 14433–14441 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Gooding, J. L., Wentworth, S. J. & Zolensky, M. E. Meteoritics 26, 135–143 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Pollack, J. B., Kasting, J. F., Richardson, S. M. & Poliakoff, K. Icarus 71, 203–224 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Fanale, F. P., Postawko, S. E., Pollack, J. B., Carr, M. H. & Pepin, R. O. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Mattews, M. S.) 1135–1179 (Univ. Arizona Press, Tucson, 1992).

    Google Scholar 

  9. Gooding, J. L., Arvidson, R. E. & Zolotov, M. Yu. in Mars (eds Kieffer, H. H., Jakozky, B. M., Snyder, C. W. & Mattews, M. S.) 626–651 (Univ. Arizona Press, Tucson, 1992).

    Google Scholar 

  10. Banin, A., Clark, B. C. & Wänke, H. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 594–625 (Univ. Arizona Press, Tucson, 1992).

    Google Scholar 

  11. Biermann, K. et al. J. geophys. Res. 82, 4641–4658 (1977).

    Article  ADS  Google Scholar 

  12. Luhmann, J. G., Johnson, R. E. & Zhang, M. H. G. Geophys. Res. Lett. 19, 2151–2154 (1992).

    Article  ADS  CAS  Google Scholar 

  13. Jakosky, B. M., Pepin, R. O., Johnson, R. E. & Fox, J. L. Icarus 111, 271–288 (1994).

    Article  ADS  CAS  Google Scholar 

  14. Pepin, R. O. Icarus 111, 289–304 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Haberle, R. M., Tyler, D., McKay, C. P. & Davis, W. L. Icarus 109, 102–120 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Weber, M. J. (ed.) Handbook of Laser Science and Technology Vol. 4, 2 224–225 (CRC, Boca Raton, Florida, 1986).

  17. McElroy, M. B. & Donahue, T. M. Science 177, 986–988 (1972).

    Article  ADS  CAS  Google Scholar 

  18. Krasnopolsky, V. A. J. geophys. Res. 100, 3263–3276 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Mount, G. H. & Rottman, G. J. J. geophys. Res. 88, 5403–5410 (1983).

    Article  ADS  Google Scholar 

  20. Clark, B. C. & Van Hart, D. C. Icarus 45, 370–378 (1981).

    Article  ADS  CAS  Google Scholar 

  21. Greeley, R. J. geophys. Res. 87, 10009–10024 (1982).

    Article  ADS  Google Scholar 

  22. Pollack, J. B. et al. J. geophys. Res. 84, 2929–2945 (1979).

    Article  ADS  CAS  Google Scholar 

  23. Greely, R., Lancaster, N., Lee, S., Thomas, P. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Mattews, M. S.) 730–766 (Univ. Arizona Press, Tucson, 1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukhin, L., Koscheevi, A., Dikov, Y. et al. Experimental simulations of the photodecomposition of carbonates and sulphates on Mars. Nature 379, 141–143 (1996). https://doi.org/10.1038/379141a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/379141a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing