Letter | Published:

Dynamics of CO2-driven lake eruptions

Abstract

ON 21 August 1986, a massive release of carbon dioxide from Lake Nyos in Cameroon killed about 1,700 people. A similar event occurred on 15 August 1984 at Lake Monoun, also in Cameroon. It was suggested1–5 that the CO2 released was initially dissolved in the hypolimnion (dense lower layer) of the lake, and was released by eruptive outgassing. Because of its violence, the Nyos outburst was at first thought6 to have been volcanic, but undisturbed sediments and other evidence indicate that no large volcanic eruption occurred7–9. Recent experiments10,11 have shown that decompression of CO2-saturated water is able to power explosive eruptions. Here I analyse the dynamics of CO2-driven lake-water eruptions by deriving an equation of state for gas-liquid mixtures and using it to integrate the Bernoulli equation, which describes the dynamics of the bubbly flow. I find that under certain conditions these eruptions can be violent: the lake-surface exit velocity of an initially gas-saturated water parcel may reach 89m s−1 for Lake Nyos and 51m s−1 for Lake Monoun. The dynamics are similar to those of water-driven volcanic eruptions, which are also powered by gas exsolution from a liquid.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Freeth, S. J. & Kay, R. L. F. Nature 325, 104–105 (1987).

  2. 2

    Sigurdsson, H. et al. J. Volcan. geotherm. Res. 31, 1–16 (1987).

  3. 3

    Kling, G. W. et al. Science 236, 169–175 (1987).

  4. 4

    Sabroux, J. C. et al. J. Volcan. geotherm. Res. 42, 381–384 (1990).

  5. 5

    Sigvaldason, G. E. J. Volcan. geotherm. Res. 39, 97–107 (1989).

  6. 6

    Tazieff, H. J. Volcan. geotherm. Res. 39, 109–116 (1989).

  7. 7

    Giggenbach, W. F. J. Volcan. geotherm. Res. 42, 337–362 (1990).

  8. 8

    Kling, G. W., Tuttle, M. L. & Evans, W. C. J. Volcan. geotherm. Res. 39, 151–165 (1989).

  9. 9

    Freeth, S. J. in Natural Hazards in West and Central Africa (eds Freeth, S. J., Ofoegbu, C. O. & Onouha, K. M.) 63–82 (Vieweg, Braunschweig, 1992).

  10. 10

    Mader, H. M. et al. Nature 372, 85–88 (1994).

  11. 11

    Zhahg, Y., Sturtevant, B. & Stolper, E. M. in IUGG XXI General Assembly B413 (abstr.) (1466, Boulder, CO, 1995).

  12. 12

    Kanari, S.-I. J. Volcan. geotherm. Res. 39, 135–149 (1989).

  13. 13

    Tietze, K. in Natural Hazards in West and Central Africa (eds Freeth. S. J., Ofoegbu, C. O. & Onuoha, K. M.) 97–108 (Vieweg, Braunschweig, 1992).

  14. 14

    Evans, W. C. et al. Geochem. J. 28, 139–162 (1994).

  15. 15

    Wilson, L. J. Volcan. geotherm. Res. 8, 297–314 (1980).

  16. 16

    Cussler, E. L. Diffusion: Mass Transfer in Fluid Systems (Cambridge Univ. Press, 1984).

  17. 17

    Zhang, Y., Stolper, E. M. & Wasserburg, G. J. Geochim. cosmochim. Acta 55, 441–456 (1991).

  18. 18

    Kling, G. W., Evans, W. C., Tuttle, M. L. & Tanyileke, G. Nature 368, 405–406 (1994).

  19. 19

    Crawford, G. D. & Stevenson, D. J. Icarus 73, 66–79 (1988).

  20. 20

    Wiebe, R. & Gaddy, V. L. J. Am. chem. Soc. 62, 815–817 (1940).

  21. 21

    Weiss, R. F. Mar. Chem. 2, 203–215 (1974).

  22. 22

    Dean, J. A. Lange's Handbook of Chemistry (McGraw-Hill, New York, 1985).

  23. 23

    Weast, R. C. CRC Handbook of Chemistry and Physics (CRC, Boca Raton, FL, 1983).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.