Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dynamics of CO2-driven lake eruptions

Abstract

ON 21 August 1986, a massive release of carbon dioxide from Lake Nyos in Cameroon killed about 1,700 people. A similar event occurred on 15 August 1984 at Lake Monoun, also in Cameroon. It was suggested1–5 that the CO2 released was initially dissolved in the hypolimnion (dense lower layer) of the lake, and was released by eruptive outgassing. Because of its violence, the Nyos outburst was at first thought6 to have been volcanic, but undisturbed sediments and other evidence indicate that no large volcanic eruption occurred7–9. Recent experiments10,11 have shown that decompression of CO2-saturated water is able to power explosive eruptions. Here I analyse the dynamics of CO2-driven lake-water eruptions by deriving an equation of state for gas-liquid mixtures and using it to integrate the Bernoulli equation, which describes the dynamics of the bubbly flow. I find that under certain conditions these eruptions can be violent: the lake-surface exit velocity of an initially gas-saturated water parcel may reach 89m s−1 for Lake Nyos and 51m s−1 for Lake Monoun. The dynamics are similar to those of water-driven volcanic eruptions, which are also powered by gas exsolution from a liquid.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Freeth, S. J. & Kay, R. L. F. Nature 325, 104–105 (1987).

    Article  ADS  Google Scholar 

  2. Sigurdsson, H. et al. J. Volcan. geotherm. Res. 31, 1–16 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Kling, G. W. et al. Science 236, 169–175 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Sabroux, J. C. et al. J. Volcan. geotherm. Res. 42, 381–384 (1990).

    Article  ADS  Google Scholar 

  5. Sigvaldason, G. E. J. Volcan. geotherm. Res. 39, 97–107 (1989).

    Article  ADS  Google Scholar 

  6. Tazieff, H. J. Volcan. geotherm. Res. 39, 109–116 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Giggenbach, W. F. J. Volcan. geotherm. Res. 42, 337–362 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Kling, G. W., Tuttle, M. L. & Evans, W. C. J. Volcan. geotherm. Res. 39, 151–165 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Freeth, S. J. in Natural Hazards in West and Central Africa (eds Freeth, S. J., Ofoegbu, C. O. & Onouha, K. M.) 63–82 (Vieweg, Braunschweig, 1992).

    Google Scholar 

  10. Mader, H. M. et al. Nature 372, 85–88 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Zhahg, Y., Sturtevant, B. & Stolper, E. M. in IUGG XXI General Assembly B413 (abstr.) (1466, Boulder, CO, 1995).

    Google Scholar 

  12. Kanari, S.-I. J. Volcan. geotherm. Res. 39, 135–149 (1989).

    Article  ADS  Google Scholar 

  13. Tietze, K. in Natural Hazards in West and Central Africa (eds Freeth. S. J., Ofoegbu, C. O. & Onuoha, K. M.) 97–108 (Vieweg, Braunschweig, 1992).

    Book  Google Scholar 

  14. Evans, W. C. et al. Geochem. J. 28, 139–162 (1994).

    Article  CAS  Google Scholar 

  15. Wilson, L. J. Volcan. geotherm. Res. 8, 297–314 (1980).

    Article  ADS  Google Scholar 

  16. Cussler, E. L. Diffusion: Mass Transfer in Fluid Systems (Cambridge Univ. Press, 1984).

    Google Scholar 

  17. Zhang, Y., Stolper, E. M. & Wasserburg, G. J. Geochim. cosmochim. Acta 55, 441–456 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Kling, G. W., Evans, W. C., Tuttle, M. L. & Tanyileke, G. Nature 368, 405–406 (1994).

    Article  ADS  Google Scholar 

  19. Crawford, G. D. & Stevenson, D. J. Icarus 73, 66–79 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Wiebe, R. & Gaddy, V. L. J. Am. chem. Soc. 62, 815–817 (1940).

    Article  CAS  Google Scholar 

  21. Weiss, R. F. Mar. Chem. 2, 203–215 (1974).

    Article  CAS  Google Scholar 

  22. Dean, J. A. Lange's Handbook of Chemistry (McGraw-Hill, New York, 1985).

    Google Scholar 

  23. Weast, R. C. CRC Handbook of Chemistry and Physics (CRC, Boca Raton, FL, 1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y. Dynamics of CO2-driven lake eruptions. Nature 379, 57–59 (1996). https://doi.org/10.1038/379057a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/379057a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing