Letter | Published:

Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule

Nature volume 378, pages 767768 (28 December 1995) | Download Citation

Subjects

Abstract

THE homochirality of natural amino acids and sugars remains a puzzle for theories of the chemical origin of life1–18. In 1953 Frank7 proposed a reaction scheme by which a combination of autocatalysis and inhibition in a system of replicating chiral molecules can allow small random fluctuations in an initially racemic mixture to tip the balance to yield almost exclusively one enantiomer. Here we show experimentally that autocatalysis in a chemical reaction can indeed enhance a small initial enantiomeric excess of a chiral molecule. When a 5-pyrimidyl alkanol with a small (2%) enantiomeric excess is treated with diisopropylzinc and pyrimidine-5-car-boxaldehyde, it undergoes an autocatalytic reaction to generate more of the alkanol. Because the reaction involves a chiral catalyst generated from the initial alkanol, and because the catalytic step is enantioselective, the enantiomeric excess of the product is enhanced. This process provides a mechanism by which a small initial imbalance in chirality can become overwhelming.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Nature 374, 594–595 (1995).

  2. 2.

    Nature 314, 400–401 (1985).

  3. 3.

    Topics Stereochem. 18, 1–96 (1988).

  4. 4.

    & Proc. R. Soc. Lond. A 397, 45–65 (1985).

  5. 5.

    et al. Tetrahedron Lett. 27, 2479–2482 (1971).

  6. 6.

    Nature 329, 712–714 (1987).

  7. 7.

    Biochem. biophys. Acta 11, 459–463 (1953).

  8. 8.

    Chemical Evolution Ch. 7 (Clarendon, London, 1969).

  9. 9.

    J. Macromolec. Sci.—Chem. A 26, 1033–1041 (1989).

  10. 10.

    & Nature 314, 438–441 (1985).

  11. 11.

    Nature 318, 172–173 (1985).

  12. 12.

    Biochim. biophys. Acta 13, 171–174 (1954).

  13. 13.

    , & J. chem. Soc. 1443–1446 (1952).

  14. 14.

    et al. J. Am. chem. Soc. 107, 3111–3122 (1985).

  15. 15.

    , , & Science 174, 1018–1020 (1971).

  16. 16.

    et al. J. Am. chem. Soc. 108, 2353–2357 (1986).

  17. 17.

    & J. Am. chem. Soc. 110, 7877–7878 (1988).

  18. 18.

    & Angew. Chem., Int. Edn. engl. 30, 49–69 (1991).

  19. 19.

    , & J. chem. Soc., chem. Commun. 982–983 (1990).

  20. 20.

    , , & Tetrahedron: Asymmetry 5, 789–792 (1994).

  21. 21.

    , & Tetrahedron: Asymmetry 6, 637–638 (1995).

  22. 22.

    & Chem. Rev. 92, 833–856 (1992).

  23. 23.

    , , & J. org. Chem. 59, 7908–7909 (1994).

  24. 24.

    , , & Chem. Lett. 601–604 (1978).

  25. 25.

    & J. chem. Soc., Perkin Trans. 1 2717–2720 (1991).

  26. 26.

    & Synth. Commun. 24, 253–256 (1994).

  27. 27.

    , & Science 250, 975–976 (1990).

Download references

Author information

Affiliations

  1. Department of Applied Chemistry, Faculty of Science, Science University of Tokyo, Kagurazaka, Shinjuku-ku, Tokyo 162, Japan

    • Kenso Soai
    • , Takanori Shibata
    • , Hiroshi Morioka
    •  & Kaori Choji

Authors

  1. Search for Kenso Soai in:

  2. Search for Takanori Shibata in:

  3. Search for Hiroshi Morioka in:

  4. Search for Kaori Choji in:

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/378767a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.