Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule

Abstract

THE homochirality of natural amino acids and sugars remains a puzzle for theories of the chemical origin of life1–18. In 1953 Frank7 proposed a reaction scheme by which a combination of autocatalysis and inhibition in a system of replicating chiral molecules can allow small random fluctuations in an initially racemic mixture to tip the balance to yield almost exclusively one enantiomer. Here we show experimentally that autocatalysis in a chemical reaction can indeed enhance a small initial enantiomeric excess of a chiral molecule. When a 5-pyrimidyl alkanol with a small (2%) enantiomeric excess is treated with diisopropylzinc and pyrimidine-5-car-boxaldehyde, it undergoes an autocatalytic reaction to generate more of the alkanol. Because the reaction involves a chiral catalyst generated from the initial alkanol, and because the catalytic step is enantioselective, the enantiomeric excess of the product is enhanced. This process provides a mechanism by which a small initial imbalance in chirality can become overwhelming.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bada, J. L. Nature 374, 594–595 (1995).

    Article  ADS  CAS  Google Scholar 

  2. Mason, S. F. Nature 314, 400–401 (1985).

    Article  ADS  Google Scholar 

  3. Bonner, W. A. Topics Stereochem. 18, 1–96 (1988).

    CAS  Google Scholar 

  4. Mason, S. F. & Tranter, G. E. Proc. R. Soc. Lond. A 397, 45–65 (1985).

    Article  ADS  CAS  Google Scholar 

  5. Kagan, H. B. et al. Tetrahedron Lett. 27, 2479–2482 (1971).

    Article  Google Scholar 

  6. Meiring, W. J. Nature 329, 712–714 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Frank, F. C. Biochem. biophys. Acta 11, 459–463 (1953).

    Article  CAS  Google Scholar 

  8. Calvin, M. Chemical Evolution Ch. 7 (Clarendon, London, 1969).

    Google Scholar 

  9. Wynberg, H. J. Macromolec. Sci.—Chem. A 26, 1033–1041 (1989).

    Article  Google Scholar 

  10. Kondepudi, D. K. & Nelson, G. W. Nature 314, 438–441 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Tranter, G. E. Nature 318, 172–173 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Havinga, E. Biochim. biophys. Acta 13, 171–174 (1954).

    Article  CAS  Google Scholar 

  13. Baker, W., Gilbert, B. & Ollis, W. D. J. chem. Soc. 1443–1446 (1952).

  14. Berkovitch-Yellin, Z. et al. J. Am. chem. Soc. 107, 3111–3122 (1985).

    Article  CAS  Google Scholar 

  15. Pincock, R. E., Perkins, R. R., Ma, A. S. & Wilson, K. R. Science 174, 1018–1020 (1971).

    Article  ADS  CAS  Google Scholar 

  16. Puchot, C. et al. J. Am. chem. Soc. 108, 2353–2357 (1986).

    Article  CAS  Google Scholar 

  17. Oguni, N. & Kaneko, T. J. Am. chem. Soc. 110, 7877–7878 (1988).

    Article  CAS  Google Scholar 

  18. Noyori, R. & Kitamura, M. Angew. Chem., Int. Edn. engl. 30, 49–69 (1991).

    Article  Google Scholar 

  19. Soai K., Niwa, S. & Hori, H. J. chem. Soc., chem. Commun. 982–983 (1990).

  20. Soai K., Hayase, T., Shimada, C. & Isobe, K. Tetrahedron: Asymmetry 5, 789–792 (1994).

    Article  CAS  Google Scholar 

  21. Soai K., Hayase, T. & Takai, K. Tetrahedron: Asymmetry 6, 637–638 (1995).

    Article  CAS  Google Scholar 

  22. Soai K. & Niwa, S. Chem. Rev. 92, 833–856 (1992).

    Article  CAS  Google Scholar 

  23. Soai K., Hayase, T., Takai, K. & Sugiyama, T. J. org. Chem. 59, 7908–7909 (1994).

    Article  CAS  Google Scholar 

  24. Sato T., Soai, K., Suzuki, K. & Mukaiyama, T. Chem. Lett. 601–604 (1978).

  25. Niwa, S. & Soai, K. J. chem. Soc., Perkin Trans. 1 2717–2720 (1991).

  26. Rho, T. & Abuh, Y. F. Synth. Commun. 24, 253–256 (1994).

    Article  CAS  Google Scholar 

  27. Kondepudi, D. K., Kaufman, R. J. & Singh, N. Science 250, 975–976 (1990).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soai, K., Shibata, T., Morioka, H. et al. Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule. Nature 378, 767–768 (1995). https://doi.org/10.1038/378767a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/378767a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing