Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Essential function of LIF receptor in motor neurons

Abstract

DEVELOPMENT and maintenance of the mammalian nervous system is dependent upon neurotrophic cytokines. One class of neurotrophic factor acts through receptor complexes involving the low-affinity leukaemia inhibitory factor receptor subunit (LIF-R)1–3. Members of this family of cytokines, such as ciliary neurotrophic factor (CNTF) and leukaemia inhibitory factor (LIF), have profound effects on the survival and maintenance of motor neurons4–10. Recently it was reported that mice lacking LIF-R die shortly after birth11 unlike mice lacking CNTF or LIF which are viable. Here we describe histopathological analyses of lifr mutants that reveal a loss >35% of facial motor neurons, 40% of spinal motor neurons and 50% of neurons in the nucleus ambiguus. These findings point to the existence of a ligand for LIF-R that is required for the normal development of motor neurons in both brainstem nuclei and spinal cord.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gearing, D. P. et al. EMBO J. 10, 2839–2848 (1991).

    Article  CAS  Google Scholar 

  2. Gearing, D. P. et al. Science 255, 1434–1437 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Davis, S. et al. Science 260, 1805–1808 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Arakawa, Y., Sendtner, M. & Thoenen, H. J. Neurosci. 10, 3507–3515 (1990).

    Article  CAS  Google Scholar 

  5. Sendtner, M., Kreutzberg, G. W. & Thoenen, H. Nature 345, 440–441 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Masu, Y. et al. Nature 365, 27–32 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Richards, L. J., Kilpatrick, T. J., Bartlett, P. F. & Murphy, M. J. Neurosci. Res. 33, 476–484 (1992).

    Article  CAS  Google Scholar 

  8. Martinou, J.-C., Martinou, I. & Kato, A. C. Neuron 8, 737–744 (1992).

    Article  CAS  Google Scholar 

  9. Zurn, A. D. & Werren, F. Devl Biol. 163, 309–315 (1994).

    Article  CAS  Google Scholar 

  10. Hughes, R. A., Sendtner, M. & Thoenen, H. J. Neurosci. Res. 36, 663–671 (1993).

    Article  CAS  Google Scholar 

  11. Ware, C. B. et al. Development 121, 1283–1299 (1995).

    CAS  PubMed  Google Scholar 

  12. Mountford, P. et al. Proc. natn. Acad. Sci. U.S.A. 91, 4303–4307 (1994).

    Article  ADS  CAS  Google Scholar 

  13. Mountford, P. & Smith, A. G. Trends Genet. 11, 179–184 (1995).

    Article  CAS  Google Scholar 

  14. Ellenberger, H. H. & Feldman, J. L. J. comp. Neurol. 294, 202–211 (1990).

    Article  CAS  Google Scholar 

  15. Smith, J. C., Greer, J. J., Liu, G. & Feldman, J. L. J. Neurophysiol. 64, 1149–1169 (1990).

    Article  CAS  Google Scholar 

  16. Paton, J. F. R., Ramirez, J.-M. & Richter, D. W. Pflügers Arch. 428, 250–260 (1994).

    Article  CAS  Google Scholar 

  17. Stewart, C. L. et al. Nature 359, 76–79 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Escary, J.-L., Perreau, J., Duménil, D., Ezine, S. & Brûlet, P. Nature 363, 361–364 (1993).

    Article  ADS  CAS  Google Scholar 

  19. Pennica, D. et al. J. biol. Chem. 270, 10915–10922 (1995).

    Article  CAS  Google Scholar 

  20. Rose, T. M. & Bruce, G. A. Proc. natn. Acad. Sci. U.S.A. 88, 8641–8645 (1991).

    Article  ADS  CAS  Google Scholar 

  21. Ip, N. Y. et al. Neuron 10, 89–102 (1993).

    Article  CAS  Google Scholar 

  22. Stahl, N. & Yancopoulos, G. D. J. Neurobiol. 25, 1454–1466 (1994).

    Article  CAS  Google Scholar 

  23. Smith, A. G. J. Tiss. Cult. Meth. 13, 89–94 (1991).

    Article  ADS  Google Scholar 

  24. Beddington, R. S. P., Morgenstern, J., Land, H. & Hogan, A. Development 106, 37–46 (1989).

    CAS  PubMed  Google Scholar 

  25. Wilkinson, D. G. In Situ Hybridization: a Practical Approach (IRL, Oxford, 1992).

    Google Scholar 

  26. Skarnes, W. C., Auerbach, B. A. & Joyner, A. L. Genes Dev. 6, 903–918 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Sendtner, M. & Smith, A. Essential function of LIF receptor in motor neurons. Nature 378, 724–727 (1995). https://doi.org/10.1038/378724a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/378724a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing