Abstract
CLATHRIN-coated vesicles transport selected integral membrane proteins from the cell surface and the trans-Golgi network to the endosomal system1,2. Before fusing with their target the vesicles must be stripped of then* coats. This process is effected by the chaperone protein hspTOc together with a 100K cofactor3 which we here identify as the coat protein auxilin. Auxilin binds with high affinity to assembled clathrin lattices and, in the presence of ATP, recruits hsp70c. Dissociation of the lattice does not depend as previously supposed on clathrin light chains or on the amino-terminal domain of the heavy chain4,5. The presence of a J-domain at its carboxy terminus now defines auxilin as a member of the DnaJ protein family. In conjunction with hsp70, DnaJ proteins catalyse protein folding, protein transport across membranes and the selective disruption of protein-protein interactions6–8. We show that deletion of the J-domain of auxilin results in the loss of cofactor activity.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Vesicle trafficking and vesicle fusion: mechanisms, biological functions, and their implications for potential disease therapy
Molecular Biomedicine Open Access 21 September 2022
-
Endocytosis: a pivotal pathway for regulating metastasis
British Journal of Cancer Open Access 02 December 2020
-
HSP70 regulates Eg5 distribution within the mitotic spindle and modulates the cytotoxicity of Eg5 inhibitors
Cell Death & Disease Open Access 01 September 2020
Access options
Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.
References
Brodsky, F. M. Science 242, 1396–1402 (1988).
Goldstein, J. L., Brown, M. S., Anderson, R. G., Russell, D. W. & Schneider, W. J. A. Rev. Cell Biol. 1, 1–39 (1985).
Prasad, K., Barouch, W., Greene, L. & Eisenberg, E. J. biol. Chem. 268, 23758–23761 (1993).
Schmid, S. L., Braell, W. A., Schlossman, D. M. & Rothman, J. E. Nature 311, 228–231 (1984).
Schmid, S. L. & Rothman, J. E. J. biol. Chem. 260, 10050–10056 (1985).
Hartl, F. U. Semin. Immun. 3, 5–16 (1991).
Georgopoulos, C. & Welch, W. J. A. Rev. Cell Biol. 9, 601–634 (1993).
Gething, M. J. & Sambrook, J. Nature 355, 33–45 (1992).
Ahle, S. & Ungewickell, E. J. Cell Biol. 111, 19–29 (1990).
Lindner, R. & Ungewickell, E. J. biol. Chem. 267, 16567–16573 (1992).
Schröder, S. et al. Eur. J. Biochem. 228, 297–304 (1995).
Norris, F. A., Ungewickell, E. & Majerus, P. W. J. biol. Chem. 270, 214–217 (1995).
DeLuca-Flaherty, C., McKay, D. B., Parham, P. & Hill, B. L. Cell 62, 875–887 (1990).
Lindner, R. & Ungewickell, E. Biochemistry 30, 9097–9101 (1991).
Winkler, F. K. & Stanley, K. K. EMB0 J. 2, 1393–1400 (1983).
Schmid, S. L., Matsumoto, A. K. & Rothman, J. E. Proc. natn. Acad. Sci. U.S.A. 79, 91–95 (1982).
Prasad, K., Heuser, J., Eisenberg, E. & Greene, L. J. biol. Chem. 269, 6931–6939 (1994).
Braell, W. A., Schlossman, D. M., Schmid, S. L. & Rothman, J. E. J. Cell Biol. 99, 734–741 (1984).
King, C., Eisenberg, E. & Greene, L. J. biol. Chem. 270, 22535–22540 (1995).
Cyr, D. M., Langer, T. & Douglas, M. G. Trends biochem. Sci. 19, 176–181 (1994).
Liberek, K., Marszalek, J., Ang, D., Georgopoulos, C. & Zylicz, M. Proc. natn. Acad. Sci. U.S.A. 88, 2874–2878 (1991).
Wall, D., Zylicz, M. & Georgopoulos, C. J. biol. Chem. 269, 5446–5451 (1994).
Feldheim, D., Rothblatt, J. & Schekman, R. Molec. cell. Biol. 12, 3288–3296 (1992).
Szyperski, T., Pellecchia, M., Wall, D., Georgopoulos, C. & Wuthrich, K. Proc. natn. Acad. Sci. U.S.A. 91, 11343–11347 (1994).
Silver, P. A. & Way, J. C. Cell 74, 5–6 (1993).
Schlenstedt, G., Harris, S., Risse, B., Lill, R. & Silver, P. A. J. Cell Biol. 129, 979–988 (1995).
Keen, J. H., Willingham, M. C. & Pastan, I. Cell 16, 303–312 (1979).
Caplan, A. J., Cyr, D. M. & Douglas, M. G. Molec. Biol. Cell 4, 555–563 (1993).
Schmid, S. L., Braell, W. A. & Rothman, J. E. J. biol. Chem. 260, 10057–10062 (1985).
Heuser, J. & Steer, C. J. J. Cell Biol. 109, 1457–1466 (1989).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Ungewickell, E., Ungewickell, H., Holstein, S. et al. Role of auxilin in uncoating clathrin-coated vesicles. Nature 378, 632–635 (1995). https://doi.org/10.1038/378632a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/378632a0
This article is cited by
-
Vesicle trafficking and vesicle fusion: mechanisms, biological functions, and their implications for potential disease therapy
Molecular Biomedicine (2022)
-
Endocytosis: a pivotal pathway for regulating metastasis
British Journal of Cancer (2021)
-
Epsins in vascular development, function and disease
Cellular and Molecular Life Sciences (2021)
-
HSP70 regulates Eg5 distribution within the mitotic spindle and modulates the cytotoxicity of Eg5 inhibitors
Cell Death & Disease (2020)
-
LRRK2 Biology from structure to dysfunction: research progresses, but the themes remain the same
Molecular Neurodegeneration (2019)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.