Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evidence from molecular dynamics simulations for non-metallic behaviour of solid hydrogen above 160 GPa

Abstract

THE behaviour of molecular hydrogen at high pressures has implications for the interiors of the giant planets, which consist mainly of hydrogen. In particular, the question of whether solid hydrogen becomes metallic under these conditions has been much debated1–9, in part because the structure that molecular hydrogen adopts at high pressure is not known. Here we report the results of first-principles molecular dynamics simulations of solid hydrogen at pressures up to 270 GPa. We find that at 77 K, hydrogen exists as a stable, orientationally disordered phase up to 60 GPa, consistent with experimental results1,10. As the presssure is raised, a gradual transformation to an ordered orthorhombic structure begins at 160 GPa, and by 260 GPa the solid becomes semi-conducting, with an indirect band gap of 1.4eV. The calculated vibrational density of states of this phase is consistent with infrared and Raman spectra measured up to 160 GPa (ref. 11). Although limitations on the simulation time and size may result in an over-estimate of the absolute pressure, our calculations show that solid hydrogen does not become metallic, even at pressures approaching 260 GPa.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Mao, H-K & Hemley, R. J. Rev. mod. Phys. 66, 671–692 (1994).

    Article  ADS  CAS  Google Scholar 

  2. Chakravarty, S., Rose, J. H., Wood, D. & Ashcroft, N. W. Phys. Rev. B24, 1624–1635 (1981).

    Article  ADS  CAS  Google Scholar 

  3. Min, B. I., Jansen, H. J. F. & Freeman, A. J. Phys. Rev B33, 6383–6390 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Barbee, T. W., Garcia, A., Cohen, M. L. & Martins, J. L., Phys. Rev. Lett. 62, 1150–1153 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Chacnam, H. & Louie, S. G. Phys. Rev. Lett. 66, 64–67 (1991).

    Article  ADS  Google Scholar 

  6. Garcia, A., Barbee, T. W., Cohen, M. L. & Silvera, I. F. Europhys. Lett. 13, 355–360 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Kaxiras, E., Broughton, J. & Hemley, R. J. Phys. Rev. Lett. 67, 1138–1141 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Nagara, H. & Nakahara, T. Phys. Rev. Lett. 68, 2468–2471 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Natoli, V., Martin, R. M. & Ceperley, D. Phys. Rev. Lett. 74, 1601–1604 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Mao, H. K. et al. Science 239, 1131–1134 (1988).

    Article  ADS  CAS  Google Scholar 

  11. Hemley, R. J., Soos, Z. G., Hanfland, M. & Mao, H-K. Nature 369, 384–387 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Car, R. & Parrinello, M. Phys. Rev. Lett. 55, 2471–2474 (1985).

    Article  ADS  CAS  Google Scholar 

  13. Surh, M. P., Barbee, T. W. & Mailhot, C. Phys. Rev. Lett. 70, 4090–4093 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Marx, D. & Parrinello, M. Z. Phys. B95, 143–144 (1994).

    CAS  Google Scholar 

  15. Sharma, S. K., Mao, H. K. & Bell, P. M. Phys. Rev. Lett. 44, 886–888 (1980).

    Article  ADS  CAS  Google Scholar 

  16. Hemley, R. J. & Mao, H. K. Phys. Rev. Lett. 61, 857–860 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Hanfland, M., Hemley, R. J., Mao, H. K. & Williams, G. P. Phys. Rev. Lett. 69, 1129–1132 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Hanfland, M., Hemley, R. J. & Mao, H. K. Phys. Rev. Lett. 70, 3760–3763 (1993).

    Article  ADS  CAS  Google Scholar 

  19. Kaxiras, E. & Broughton, J. Comput. Mater. Sci. 3, 368–376 (1995).

    Article  CAS  Google Scholar 

  20. Hoffmann, R. Solids and Surfaces (VCH, New York, 1988).

    Google Scholar 

  21. Albright, T. A., Burdett, J. K. & Whangbo, M-H. in Orbital Interactions in Chemistry (Wiley, New York, 1985).

    Google Scholar 

  22. Hohl, D. et al. Phys. Rev. Lett. 71, 541–544 (1993).

    Article  ADS  CAS  Google Scholar 

  23. Vanderbilt, D. Phys. Rev. B41, 7892–7895 (1990).

    Article  ADS  CAS  Google Scholar 

  24. Wijngaarden, R. J., Lagendijk, A. & Silvera, I. F. Phys. Rev. B26, 4957–4961 (1982).

    Article  ADS  CAS  Google Scholar 

  25. Perdew, J. P. & Zunger, A Phys. Rev. B23, 5048–5078 (1981).

    Article  ADS  CAS  Google Scholar 

  26. Perdew, J. P. Phys. Rev. B33, 8822–8824 (1986).

    Article  ADS  CAS  Google Scholar 

  27. Becke, A. D., Phys. Rev. B38, 3098–3100 (1988).

    Article  ADS  CAS  Google Scholar 

  28. Hemley, R. J. et al. Phys. Rev. B42, 6458–6470 (1990).

    Article  CAS  Google Scholar 

  29. te Velde, G. & Baerends, E. J. Phys. Rev. B44, 7888–7903 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tse, J., Klug, D. Evidence from molecular dynamics simulations for non-metallic behaviour of solid hydrogen above 160 GPa. Nature 378, 595–597 (1995). https://doi.org/10.1038/378595a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/378595a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing