Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of the annexin XII hexamer and implications for bilayer insertion

Abstract

ANNEXINS are a family of calcium- and phospholipid-binding proteins1,2 implicated in a number of biological processes including membrane fusion3 and ion channel formation4–7. The crystal structure of the annexin XII hexamer, refined at 2.8 Å resolution, forms a concave disk with 3–2 symmetry, about 100 Å in diameter and 70 Å thick with a central hydrophilic pore. Six intermolecular Ca2+ ions are involved in hexamer formation. An additional 18 Ca2+ ions are located on the perimeter of the disk, accessible only from the side of the hexameric disk. On the basis of the hexamer structure we propose here a new mode of protein–phospholipid bilayer interaction that is distinct from the hydrophobic insertion of typical membrane proteins. This speculative model postulates the Ca2+ -dependent insertion of the hydrophilic annexin XII hexamer into phospholipid bilayers with local reorientation of the bilayer phospholipids.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Moss, S. E. (ed.) The Annexins (Portland, London, 1992).

  2. Swairjo, M. A. & Seaton, B. A. A. Rev. Biophys. biomolec. Struct. 23, 193–213 (1994).

    Article  CAS  Google Scholar 

  3. Creutz, C. E. Science 258, 924–931 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Pollard, H. B. & Rojas, R. E. Proc. natn. Acad. Sci. U.S.A. 85, 2974–2978 (1988).

    Article  ADS  CAS  Google Scholar 

  5. Rojas, E., Pollard, H. B., Haigler, H. T., Para, C. & Burns, A. L. J. biol. Chem. 265, 21207–21215 (1990).

    CAS  PubMed  Google Scholar 

  6. Berendes, R., Voges, D., Demange, P., Huber, R. & Burger, A. Science 262, 427–430 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Demange, P. et al. Trends biochem. Sci. 19, 272–276 (1994).

    Article  CAS  Google Scholar 

  8. Schlaepfer, D. D. et al. J. biol. Chem. 267, 9529–9539 (1992).

    CAS  PubMed  Google Scholar 

  9. Voges, D. et al. J. molec. Biol. 238, 199–213 (1994).

    Article  CAS  Google Scholar 

  10. Huber, R. et al. J. molec. Biol. 223, 683–704 (1992).

    Article  CAS  Google Scholar 

  11. Weng, X. et al. Protein Sci. 2, 448–458 (1993).

    Article  CAS  Google Scholar 

  12. Creutz, C. E., Pazoles, C. J. & Pollard, H. B. J. biol. Chem. 254, 553–558 (1979).

    CAS  PubMed  Google Scholar 

  13. Jost, M., Weber, K. & Gerke, V. Biochem. J. 298, 553–559 (1994).

    Article  CAS  Google Scholar 

  14. Holland, D. R. et al. J. biol. Chem. 265, 17649–17656 (1990).

    CAS  PubMed  Google Scholar 

  15. Ahn, N. G. et al. J. biol. Chem. 262, 18657–18663 (1988).

    Google Scholar 

  16. Zaks, W. J. & Creutz, C. E. Biochemistry 30, 9607–9615 (1991).

    Article  CAS  Google Scholar 

  17. Concha, N. O., Head, J. F., Kaetzel, M. A., Dedman, J. R. & Seaton, B. A. FEBS Lett. 314, 159–162 (1992).

    Article  CAS  Google Scholar 

  18. Neumann, J.-M., Sanson, A. & Lewit-Bentley, A. Eur. J. Biochem. 225, 819–825 (1994).

    Article  CAS  Google Scholar 

  19. Creutz, C. E., Pazoles, C. J. & Pollard, H. B. J. biol. Chem. 253, 2858–2866 (1978).

    CAS  PubMed  Google Scholar 

  20. Mosser, G. J. molec. Biol. 217, 241–246 (1991).

    Article  CAS  Google Scholar 

  21. Huber, R., Römisch, J. & Paques, E.-P. EMB0 J. 99, 3867–3874 (1990).

    Article  Google Scholar 

  22. Burger, A. et al. J. molec. Biol. 237, 479–499 (1994).

    Article  CAS  Google Scholar 

  23. Weaver, J. C. Ann. N.Y. Acad. Sci. 720, 141–152 (1993).

    Article  ADS  Google Scholar 

  24. Hille, B. Ionic Channels of Excitable Membranes 2nd edn (Sinauer, Sunderland, MA, 1992).

    Google Scholar 

  25. Smart, O. S., Wallace, B. A. & Goodfellow, J. M. Biochem. Soc. Trans. 22, 146S (1994).

    Article  CAS  Google Scholar 

  26. Leckband, D. E., Israelachvili, J. N., Schmitt, F.-J. & Knoll, W. Science 255, 1419–1421 (1992).

    Article  ADS  CAS  Google Scholar 

  27. Leslie, A. G. W. in Joint CCP4 and ESF-EACMB Newsletter on Protein Crystallography No. 26 (Daresbury Laboratory, Warrington, 1992).

    Google Scholar 

  28. Tong, L. & Rossmann, M. G. Acta. crystallogr. A46, 783–792 (1990).

    Article  Google Scholar 

  29. Sack, J. S. J. molec. Graph. 6, 224–225 (1988).

    Article  Google Scholar 

  30. Brünger, A. T. X-PLOR, Version 3.1, A System for X-ray Crystallography and NMR (Yale Univ. Press, New Haven, 1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luecke, H., Chang, B., Mailliard, W. et al. Crystal structure of the annexin XII hexamer and implications for bilayer insertion. Nature 378, 512–515 (1995). https://doi.org/10.1038/378512a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/378512a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing