A nuclear 'fossil' of the mitochondrial D-loop and the origin of modern humans

Article metrics


MAMMALIAN mitochondria! DNA sequences evolve more rapidly than nuclear sequences1. Although the rapid rate of evolution is an advantage for the study of closely related species and populations, it presents a problem in situations where related species, used as outgroups in phylogenetic analyses, have accumulated so much change that multiple substitutions obliterate the phylogenetic information2. However, mitochondrial DNA sequences are frequently inserted into the nuclear genome3, where they presumably evolve as nuclear pseudogene sequences and therefore more slowly than their mitochondria! counterparts. Such sequences thus represent molecular 'fossils' that could shed light on the evolution of the mitochondrial genome and could be used as outgroups in situations where no appropriate outgroup species exist. Here we show that human chromosome 11 carries a recent integration of the mitochondrial control region that can be used to gain further insight into the origin of the human mitochondrial gene pool.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Brown, W. M., Prager, E. M., Wang, A. & Wilson, A. C. J. molec. Evol. 18, 225–239 (1982).

  2. 2

    Maddison, D. R., Ruvolo, M. & Swofford, D. L. Syst. Biol. 41, 111–124 (1992).

  3. 3

    Zullo, S., Sieu, L. L., Slightom, J. L., Hadler, H. I. & Eisenstadt, J. M. J. molec. Biol. 221, 1223–1235 (1991).

  4. 4

    Cann, R. L., Stoneking, M. & Wilson, A. C. Nature 325, 31–36 (1987).

  5. 5

    Vigilant, L., Stoneking, M., Harpending, H., Hawkes, K. & Wilson, A. C. Science 253, 1503–1507 (1991).

  6. 6

    Templeton, A. R. Science 255, 737 (1992).

  7. 7

    Hedges, S. B., Kumar, S., Tamura, K. & Stoneking, M. Science 255, 737–739 (1992).

  8. 8

    Maddison, D. R. Syst. Zool. 40, 355–363 (1991).

  9. 9

    Ruvolo, M., Disotell, T. R., Allard, M. W., Brown, W. M. & Honeycutt, R. L. Proc. natn. Acad. Sci. U.S.A 88, 1570–1574 (1991).

  10. 10

    Gill, P., Jeffreys, A. J. & Werrett, D. J. Nature 318, 577–579 (1985).

  11. 11

    Anderson, S. et al. Nature 290, 457–465 (1981).

  12. 12

    Tapper, D. P. & Clayton, D. A. J. biol. Chem. 256, 5106–5115 (1981).

  13. 13

    Doda, J. N., Wright, C. T. & Clayton, D. A. Proc. natn. Acad. Sci. U.S.A. 78, 6116–6120 (1981).

  14. 14

    Pult, I. et al. Biol. Chem. Hoppe-Seyler 375, 837–840 (1994).

  15. 15

    Nei, M. Molecular Evolutionary Genetics (Columbia Univ. Press, New York, 1987).

  16. 16

    Ward, R. H., Frazier, B. L., Dew-Jager, K. & Pääbo, S. Proc. natn. Acad. Sci. U.S.A. 88, 8720–8724 (1991).

  17. 17

    Lundstrom, R., Tavaré, S. & Ward, R. H. Proc. natn. Acad. Sci. U.S.A. 89, 5961–5965 (1992).

  18. 18

    Morin, P. A., Moore, J. J., Chakraborty, R., Jin, L., Goodall, J. & Woodruff, D. S. Science 285, 1193–1201 (1994).

  19. 19

    Sambrook, J., Fritch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, New York, 1989).

  20. 20

    Pena, S. D. J. et al. Proc. natn. Acad. Sci. U.S.A. 91, 1946–1949 (1994).

  21. 21

    Felsenstein, J. Phylip version 3.5p (Univ. Washington, Seattle, 1994).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.