Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Control of protein–ligand recognition using a stimuli-responsive polymer

Abstract

STIMULI-responsive polymers exhibit reversible phase changes in response to changes in environmental factors such as pH or temperature1–14. Conjugating such polymers to antibodies and proteins provides molecular systems for applications such as affinity separations, immunoassays and enzyme recovery and recycling15– 25. Here we show that conjugating a temperaturesensitive polymer to a genetically engineered site on a protein allows the protein's ligand binding affinity to be controlled. We synthesized a mutant of the protein streptavidin to enable sitespecific conjugation of the responsive polymer near the protein's binding site. Normal binding of biotin to the modified protein occurs below 32 °C, whereas above this temperature the polymer collapses and blocks binding. The collapse of the polymer and thus the enabling and disabling of binding, is reversible. Such environmentally triggered control of binding may find many applications in biotechnology and biomedicine, such as the control of enzyme reaction rates and of biosensor activity, and the controlled release of drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hoffman, A. S. Artif. Organs 19, 458–467 (1995).

    Article  CAS  Google Scholar 

  2. Heskins, M. & Guillet, J. E. J. Macromol. Sci. Chem. A2(8), 1441–1455 (1968).

    Article  CAS  Google Scholar 

  3. Tanaka, T. Scient. Am. 244, 124–138 (1981).

    Article  CAS  Google Scholar 

  4. Cussler, E. L., Stokar, M. R. & Varberg, J. E. Am. Inst. Chem. Eng. J. 30, 578–582 (1984).

    Article  CAS  Google Scholar 

  5. Ishihara, K., Hanada, N., Kato, S. & Shinohara, I. Polymer J. 16, 625–631 (1984).

    Article  CAS  Google Scholar 

  6. Hoffman, A. S. J. contr. Rel. 6, 297–305 (1987).

    Article  CAS  Google Scholar 

  7. Brannon-Peppas, L. & Peppas, N. A. J. contr. Rel. 8, 267–274 (1989).

    Article  CAS  Google Scholar 

  8. Irie, M. Adv. Polym. Sci. 94, 28–67 (1990).

    Google Scholar 

  9. Kabra, B. & Gehrke, S. H. Polymer Commun. 32, 322–323 (1991).

    CAS  Google Scholar 

  10. Kwon, I. C., Bae, Y. H. & Kim, S. W. Nature 354, 291–293 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Kokufata, E., Zhang, Y. Q. & Tanaka, T. J. Biomater. Sci. Polym. Ed. 6, 35–40 (1994).

    Article  Google Scholar 

  12. Okuzaki, H. & Osada, Y. J. Biomater. Sci. Polym. Ed. 5, 485–496 (1994).

    Article  CAS  Google Scholar 

  13. Chen, G. H. & Hoffman, A. S. Nature 373, 49–52 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Yoshida, R. et al. Nature 374, 240–242 (1995).

    Article  ADS  CAS  Google Scholar 

  15. Monji, N. & Hoffman, A. S. Appl. Biochem. Biotech. 14, 107–120 (1987).

    Article  CAS  Google Scholar 

  16. Chen, J. P. & Hoffman, A. S. Biomaterials 11, 625–630, 631–634 (1990).

    Article  CAS  Google Scholar 

  17. Monji, N. et al. Biochem. Biophys. Res. Commun. 172, 652–660 (1990).

    Article  CAS  Google Scholar 

  18. Yang, H. J., Cole, C. A., Monji, N. & Hoffman, A. S. J. Polymer Sci. A28, 219–226 (1990).

    CAS  Google Scholar 

  19. Chen, G. H. & Hoffman, A. S. ACS Polym. Preprints 33, 468–469 (1992).

    CAS  Google Scholar 

  20. Chen, G. H. & Hoffman, A. S. Bioconj. Chem. 4, 509–514 (1993).

    Article  CAS  Google Scholar 

  21. Takei, Y. G. et al. Bioconj. Chem. 4, 42–46 (1993).

    Article  CAS  Google Scholar 

  22. Monji, N., Cole, C. A. & Hoffman, A. S. J. Biomater. Sci. Polym. Ed. 5, 407–420 (1994).

    Article  CAS  Google Scholar 

  23. Chen, G. H. & Hoffman, A. S. J. Biomater. Sci. Polym. Ed. 5, 371–382 (1994).

    Article  Google Scholar 

  24. Chen, G. H. & Hoffman, A. S. Macromolec. Chem. Phys. 196, 1251–1259 (1995).

    Article  CAS  Google Scholar 

  25. Chilkoti, A., Chen, G., Stayton, P. S. & Hoffman, A. S. Bioconj. Chem. 5, 504–507 (1994).

    Article  CAS  Google Scholar 

  26. Stayton, P. S., Fisher, M. & Sligar, S. G. J. biol. Chem. 267, 13544–13548 (1988).

    Google Scholar 

  27. Weber, P. C., Ohlendorf, D. H., Wendoloski, J. J. & Salemme, F. R. Science 243, 85–88 (1989).

    Article  ADS  CAS  Google Scholar 

  28. Burns, J. A., Butler, J. C., Moran, J. & Whitesides, G. M. J. org. Chem. 56, 2648–2650 (1991).

    Article  CAS  Google Scholar 

  29. Chilkoti, A., Tan, P. & Stayton, P. S. Proc. natn. Acad. Sci. U.S.A. 92, 1754–1758 (1995).

    Article  ADS  CAS  Google Scholar 

  30. Kraulis, P. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stayton, P., Shimoboji, T., Long, C. et al. Control of protein–ligand recognition using a stimuli-responsive polymer. Nature 378, 472–474 (1995). https://doi.org/10.1038/378472a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/378472a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing