Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Taming spatiotemporal chaos with disorder

Abstract

DISORDERand noise in physical systems usually tend to destroy spatial and temporal regularity, but recent research into nonlinear systems provides intriguing counterexamples. In the phenomenon of stochastic resonance1, for example, the presence of noise improves the ability of some nonlinear systems to transfer information reliably. Noise can also remove chaos in a model oscillator2, and facilitate synchronization in an extended array of bistable elements3. Here we explore the use of disorder as a means to control spatiotemporal chaos4–8 in coupled arrays of forced, damped, nonlinear oscillators. Chaotic behaviour in spatially extended systems, especially in biology and physiology9,10, might be amenable to control, as occurs in lowdimensional temporally chaotic systems11,12. In our numerical experiments, one and twodimensional arrays of identical oscillators behave chaotically, but the introduction of slight, uncorrelated differences between the oscillators induces ordered motion characterized by complex but regular spatiotemporal patterns.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wiesenfeld, K. & Moss, F. Nature 373, 33–36 (1995).

    Article  ADS  CAS  Google Scholar 

  2. Lindner, J. F., Meadows, B. K., Ditto, W. L., Inchiosa, M. E. & Bulsara, A. R. Phys. Rev. Lett. 75, 3–6 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Rajasekar, S. & Lakshmanan, M. Physica D67, 282–300 (1993).

    Google Scholar 

  4. Sepulchre, J. A. & Babloyantz, A. Phys. Rev. E48, 945–950 (1993).

    ADS  CAS  Google Scholar 

  5. Gang, H. & Kaifen, H. Phys. Rev. Lett. 71, 3794–3797 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Auerbach, D. Phys. Rev. Lett. 72, 1184–1187 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Aranson, I., Levine, H. & Tsimring, L. Phys. Rev. Lett. 72, 2561–2564 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Johnson, G. A., Löcher, M. & Hunt, E. R. Phys. Rev. E51, R1625–R1628 (1995).

    ADS  CAS  Google Scholar 

  9. Garfinkel, A., Spano, M. L., Ditto, W. L. & Weiss, J. N. Science 257, 1230–1235 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Schiff, S. J., Jerger, K., Duong, D. H., Chang, T., Spano, M. L. & Ditto, W. L. Nature 370, 615–620 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Shinbrot, T. A., Grebogi, C., Ott, E. & Yorke, J. A. Nature 363, 411–417 (1993).

    Article  ADS  Google Scholar 

  12. Ditto, W. L. & Pecora, L. M. Scient. Am. 269 (2), 78–84 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braiman, Y., Lindner, J. & Ditto, W. Taming spatiotemporal chaos with disorder. Nature 378, 465–467 (1995). https://doi.org/10.1038/378465a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/378465a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing