Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A protein catalytic framework with an N-terminal nucleophile is capable of self-activation

An Erratum to this article was published on 07 December 1995

Abstract

THE crystal structures of three amidohydrolases have been determined recently1–3: glutamine PRPP amidotransferase (GAT), penicillin acylase, and the proteasome. These enzymes use the side chain of the amino-terminal residue, incorporated in a β-sheet, as the nucleophile in the catalytic attack at the carbonyl carbon. The nucleophile is cysteine in GAT, serine in penicillin acylase, and threonine in the proteasome. Here we show that all three enzymes share an unusual fold in which the nucleophile and other catalytic groups occupy equivalent sites. This fold provides both the capacity for nucleophilic attack and the possibility of autocatalytic processing. We suggest the name Ntn (N-terminal nucleophile) hydrolases for this structural superfamily of enzymes which appear to be evolutionarily related but which have diverged beyond any recog-nizable sequence similarity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Smith, J. L. et al. Science 264, 1427–1433 (1994).

    Article  ADS  CAS  Google Scholar 

  2. Duggleby, H. J. et al. Nature 373, 264–268 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Löwe, J. et al. Science 268, 533–539 (1995).

    Article  ADS  Google Scholar 

  4. Chothia, C. & Janin, J. Proc. natn. Acad. Sci. U.S.A. 78, 4146–4150 (1981).

    Article  ADS  CAS  Google Scholar 

  5. Smith, J. L. Biochem. Soc. Trans. 23, 894–898 (1995).

    Article  CAS  Google Scholar 

  6. Dodson, G. G., Lawson, D. M. & Winkler, F. K. Faraday Discuss. 93, 95–105 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Ollis, D. L. et al. Protein Engng. 5, 197–211 (1992).

    Article  CAS  Google Scholar 

  8. Aggrawal, A. K. Curr. Opinion. struct. Biol. 5, 11–19 (1995).

    Article  Google Scholar 

  9. Zwickl, P. et al. Nature struct. Biol. 1, 765–769 (1994).

    Article  CAS  Google Scholar 

  10. Sizmann, D. et al. Eur. J. Biochem. 192, 143–151 (1990).

    Article  CAS  Google Scholar 

  11. Mäntsäla, P. & Zalkin, H. J. biol. Chem. 259, 14230–14236 (1984).

    Article  Google Scholar 

  12. Souciet, J.-L. et al. J. biol. Chem. 263, 3323–3327 (1988).

    Article  CAS  Google Scholar 

  13. Zhou, G. et al. J. biol. Chem. 267, 7936–7942 (1992).

    Article  CAS  Google Scholar 

  14. Bruns, W. et al. J. molec. Appl. Genet. 3, 36–44 (1985).

    CAS  Google Scholar 

  15. Gallagher, T. et al. J. molec. Biol. 230, 516–528 (1993).

    Article  CAS  Google Scholar 

  16. Kaartinen, V. et al. J. biol. Chem. 266, 5860–5869 (1991).

    Article  CAS  Google Scholar 

  17. Mononen, I. et al. FASEB J. 7, 1247–1256 (1993).

    Article  CAS  Google Scholar 

  18. Lough, T. J. et al. Pl. molec. Biol. 19, 391–399 (1992).

    Article  CAS  Google Scholar 

  19. Tarentino, A. L. et al. Archs. Biochem. Biophys. 316, 399–406 (1995).

    Article  CAS  Google Scholar 

  20. Tate, S. S. & Meister, A. Meth. Enzym. 113, 400–419 (1985).

    Article  CAS  Google Scholar 

  21. Suzuki, H. et al. J. Bact. 171, 5169–5172 (1989).

    Article  CAS  Google Scholar 

  22. Smith, T. K. et al. Proc. natn. Acad. Sci. U.S.A. 92, 2360–2364 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Matsuda, A. et al. J. Bact. 169, 5821–5826 (1987).

    Article  CAS  Google Scholar 

  24. Wallace, C. J. A. Protein Sci. 2, 697–705 (1993).

    Article  CAS  Google Scholar 

  25. Colston, M. J. & Davis, E. O. Molec. Microbiol. 12, 359–363 (1994).

    Article  CAS  Google Scholar 

  26. Xu, M.-Q. et al. Cell 75, 1371–1377 (1993).

    Article  CAS  Google Scholar 

  27. Xu, M.-Q. et al. EMBO J. 13, 5517–5522 (1994).

    Article  CAS  Google Scholar 

  28. Seemüller, E. et al. FEBS Lett. 359, 173–178 (1995).

    Article  Google Scholar 

  29. Zalkin, H. Adv. Enzym. 66, 203–309 (1993).

    CAS  Google Scholar 

  30. Oinonen, C. et al. Nature struct. Biol. (in the press).

  31. Kumagai, H. et al. J. molec. Biol. 234, 1259–1262 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brannigan, J., Dodson, G., Duggleby, H. et al. A protein catalytic framework with an N-terminal nucleophile is capable of self-activation. Nature 378, 416–419 (1995). https://doi.org/10.1038/378416a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/378416a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing