Multiple essential functions of neuregulin in development

An Erratum to this article was published on 14 December 1995

Abstract

NEUREGULIN (also called NDF, heregulin, GGF and ARIA) is a member of the EGF family which induces growth and differentiation of epithelial, glial and muscle cells in culture1–4. The biological effects of the factor are mediated by tyrosine kinase receptors. Neuregulin can bind directly to erbB3 and erbB4 and receptor heterodimerization allows neuregulin-dependent activation of erbB2 (refs 1, 2, 5). A targeted mutation in mice reveals multiple essential roles of neuregulin in development. Here we show that neuregulin -/ - embryos die during embryogenesis and display heart malformations. In addition, Schwann cell precursors and cranial ganglia fail to develop normally. The phenotype demonstrates that in vivo neuregulin acts locally and frequently in a paracrine manner. All cell types affected by the mutation express either erbB3 or erbB4, indicating that either of these tyrosine kinase receptors can be a component in recognition and transmission of essential neuregulin signals.

References

  1. 1

    Wen, D. et al. Cell 69, 559–572 (1992).

    CAS  Article  Google Scholar 

  2. 2

    Holmes, W. E. et al. Science 256, 1205–1210 (1992).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Falls, D. L., Rosen, K. M., Corfas, G., Lane, W. S. & Fischbach, G. D. Cell 72, 801–815 (1993).

    CAS  Article  Google Scholar 

  4. 4

    Marchionni, M. A., et al. Nature 362, 312–318 (1993).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Carraway, K. L. & Cantley, L. C. Cell 78, 5–8 (1994).

    CAS  Article  Google Scholar 

  6. 6

    Peles, E. & Yarden, Y. Bioessays 15, 815–824 (1993).

    CAS  Article  Google Scholar 

  7. 7

    Icardo, J. M. & Fernandez, T. A. Acta anat. 130, 264–274 (1987).

    CAS  Article  Google Scholar 

  8. 8

    Mitchell, P. J., Timmons, P. M., Hebert, J. M., Rigby, P. W. & Tjian, R. Genes Dev. 5, 105–119 (1991).

    CAS  Article  Google Scholar 

  9. 9

    Meyer, D. & Birchmeier, C. Proc. natn. Acad. Sci. U.S.A. 91, 1064–1068 (1994).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Corfas, G., Rosen, K. M., Aratake, H., Krauss, R. & Fischbach, G. D. Neuron 14, 103–115 (1995).

    CAS  Article  Google Scholar 

  11. 11

    Ho, W. H., Armanini, M. P., Nuijens, A., Phillips, H. S. & Osheroff, P. L. J. biol. Chem. 270, 14523–14532 (1995).

    CAS  Article  Google Scholar 

  12. 12

    Shah, N. M., Marchionni, M. A., Isaacs, I., Stroobant, P. & Anderson, D. J. Cell 77, 349–360 (1994).

    CAS  Article  Google Scholar 

  13. 13

    Jin, J. J., Nikitin, A. & Rajewsky, M. F. Cell Growth Differ. 4, 227–237 (1993).

    CAS  PubMed  Google Scholar 

  14. 14

    Morrissey, T. K., Levi, A. D., Nuijens, A., Sliwkowski, M. X. & Bunge, R. P. Proc. natn. Acad. Sci. U.S.A. 92, 1431–1435 (1995).

    ADS  CAS  Article  Google Scholar 

  15. 15

    D'Amico, M. A. & Noden, D. M. Am. J. Anat. 166, 445–468 (1983).

    Article  Google Scholar 

  16. 16

    LeDouarin, N. M., Fontaine-Perus, J. & Couly, G. Trends Neurosci. 9, 175–180 (1986).

    Article  Google Scholar 

  17. 17

    Hamburger, V. J. exp. Zool. 148, 91–124 (1961).

    CAS  Article  Google Scholar 

  18. 18

    Wilkinson, D. G., Bhatt, S., Chavrier, P., Bravo, R. & Charnay, P. Nature 337, 461–464 (1989).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Murphy, P., Davidson, D. R. & Hill, R. E. Nature 341, 156–159 (1989).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Sham, M. H. et al. Cell 72, 183–196 (1993).

    CAS  Article  Google Scholar 

  21. 21

    Bronner-Fraser, M. Expl Cell Res. 118, 405–417 (1995).

    Article  Google Scholar 

  22. 22

    Threadgill, D. W. et al. Science 269, 230–234 (1995).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Sibilia, M. & Wagner, E. F. Science 269, 234–238 (1995).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Miettinen, P. J. et al. Nature 376, 337–341 (1995).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Mansour, S. L., Thomas, K. R. & Capecchi, M. R. Nature 336, 348–352 (1988).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Kuhn, R., Rajewsky, K. & Muller, W. Science 254, 707–710 (1991).

    ADS  CAS  Article  Google Scholar 

  27. 27

    Bradley, A. in Tetratocarcinomas and Embryonic Stem Cells: A Practical Approach (ed. Robertson, E.) 113–157 (IRL, Oxford, 1987).

    Google Scholar 

  28. 28

    Gossler, A. & Zachgo, J. in Gene Targeting: A Practical Approach (ed. Joyner, A. L.) 207–215 (IRL, New York, 1993).

    Google Scholar 

  29. 29

    Wilkinson, D. G. In Situ Hybridization: A Practical Approach (Oxford Univ. Press, 1992).

    Google Scholar 

  30. 30

    Skarnes, W. C., Moss, J. E., Hurtley, S. M. & Beddington, R. Proc. natn. Acad. Sci. U.S.A. 92, 6592–6596 (1995).

    ADS  CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Meyer, D., Birchmeier, C. Multiple essential functions of neuregulin in development. Nature 378, 386–390 (1995). https://doi.org/10.1038/378386a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing